20 research outputs found
The Critical Path Roadmap Project: Biomedical Risk Reduction for Extended Spaceflight
Human exploration of space requires an understanding of the risks to which crews will be exposed during such missions, and the mitigation of those risks to the fullest extent practical. This becomes a greater imperative as we prepare for interplanetary expeditions involving long periods in weightlessness in transit to and then from the destination (a planet, such as Mars, or perhaps a point in space, such as the Lagrangian point L2), and exposure to the unique environment of the destination itself. We need to know, more definitively, what the risks are to human health, safety, and performance, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate and the National Space Biomedical Research Institute (NSBRI) have implemented an effort to identify the most critical risks confronting humans on such mission and the types of research and technology efforts required to mitigate and otherwise reduce the probability and severity of those risks. This paper describes the "Critical Path Roadmap Project" to define, assess and prioritize the risks and present the results of the assessment with an emphasis on the research and technology priorities to meet the challenge of long duration human spaceflight mission
Co-Operative Advances in Behavioral Health and Performance Research and Operations
In organizations that engage in both operations and applied research, with operational needs guiding research questions and research informing improved operations, the ideal goal is a synergy of ideas and information. In reality, this ideal synergy is often lacking. Real-time operational needs driving day-to-day decisions, lack of communication, lag time in getting research advances plugged into operations can cause both areas to suffer from this gap between operations and research. At Johnson Space Center, the Behavior Health and Performance group (BHP) strives to bridge this gap by following a Human Research Program framework: Expectations of future operational needs identify the knowledge gaps; the gaps in turn guide research leading to a product that is transitioned into operations. Thus, the direction those of us in research take is in direct response to current and future needs of operations. Likewise, those of us in operations actively seek knowledge that is supported by evidence-based research. We make an ongoing effort to communicate across the research and operations gap by working closely with each other and making a conscious effort to keep each other informed. The objective of the proposed panel discussion is to demonstrate through the following presentations the results of a successful collaboration between research and operations and to provide ASMA members with more practical knowledge and strategies for building these bridges to serve our field of practice well. The panel will consist of six presenters from BHP operations, internal BHP research, and external research instigated by BHP who together represent the entire BHP Research Transition to Operations Framewor
USSR Space Life Sciences Digest, issue 16
This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology
ISS Utilization and Countermeasure Validation: Implementing the Critical Path Roadmap to Reduce Uncertainties of Extended Human Spaceflight Expeditions
Human exploration of space requires the ability to understand and mitigate risks to crews exposed to the conditions associated with such missions. This becomes a greater imperative as we prepare for interplanetary expeditions involving humans who will be subjected to long transit periods in microgravity as they travel to a distant planet such as Mars, embark and live on the planet's surface for an extended time, and finally, return to the 1 g environment of Earth. We need to know, more definitively, what the human health, safety, and performance risks are, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate along with the National Space Biomedical Research Institute (NSBRI) have been engaged in a strategic planning effort that identifies the most critical risks confronting humans who will venture forth on such missions and the types of research and technology efforts required to mitigate and otherwise reduce the probability and/or severity of those risks. This paper describes the unique approach used to define, assess and prioritize the risks and presents the results of the assessment with an emphasis on the research and technology priorities that will help us to meet the challenge of long duration human spaceflight missions
Psychosocial Characteristics of Optimum Performance in Isolated and Confined Environments (ICE)
The Behavioral Health and Performance (BHP) Element addresses human health risks in the NASA Human Research Program (HRP), including the Risk of Adverse Behavioral Conditions and the Risk of Psychiatric Disorders. BHP supports and conducts research to help characteristics and mitigate the Behavioral Medicine risk for exploration missions, and in some instances, current Flight Medical Operations. The Behavioral Health and Performance (BHP) Element identified research gaps within the Behavioral Medicine Risk, including Gap BMed6: What psychosocial characteristics predict success in an isolated, confined environment (ICE)? To address this gap, we conducted an extensive and exhaustive literature review to identify the following: 1) psychosocial characteristics that predict success in ICE environments; 2) characteristics that are most malleable; and 3) specific countermeasures that could enhance malleable characteristics
NASA Human Research Program: Behavioral Health and Performance Program Element
This viewgraph presentation reviews the performance errors associated with sleep loss, fatigue and psychomotor factors during manned space flight. Short and long term behavioral health factors are also addresse
Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload
Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk
Behavioral Health and Performance Element: Tools and Technologies
This slide presentation reviews the research into the Behavioral Health and Performance (BHP) of the Human Research Program. The program element goal is to identify, characterize and prevent or reduce behavioral health and performance risks associated with space travel, exploration, and return to terrestrial life. To accomplish this goal the program focuses on applied research that is designed to yield deliverables that reduce risk. There are several different elements that are of particular interest: Behavioral Medicine, Sleep, and team composition, and team work. In order to assure success for NASA missions the Human Research Program develops and validate the standards for each of the areas of interest. There is discussion of the impact on BHP while astronauts are on Long Duration Missions. The effort in this research is to create tools to meet the BHP concerns, these prospective tools are reviewed
Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders
The NASA commitment to human space flight includes continuing to fly astronauts on the ISS until it is decommissioned as well as possibly returning astronauts to the moon or having astronauts venture to an asteroid or Mars. As missions leave low Earth orbit and explore deeper space, BHP supports and conducts research to enable a risk posture that considers the risk of adverse cognitive or behavioral conditions and psychiatric disorders acceptable given mitigations, for pre-, in, and post-flight.The Human System Risk Board (HSRB) determines the risk of various mission scenarios using a likelihood (per person per year) by consequences matrix examining those risks across two categorieslong term health and operational (within mission). Colors from a stoplight signal are used by HSRB and quickly provide a means of assessing overall perceived risk for a particular mission scenario. Risk associated with the current six month missions on the ISS are classified as accepted with monitoring while planetary missions, such as a mission to Mars, are recognized to be a red risk that requires mitigation to ensure mission success.Currently, the HSRB deems that the risk of adverse cognitive or behavioral conditions and psychiatric outcomes requires mitigation for planetary missions owing to long duration isolation and radiation exposure (see Table 1). While limited research evidence exists from spaceflight, it is well known anecdotally that the shift from the two week shuttle missions to the six month ISS missions renders the psychological stressors of space as more salient over longer duration missions. Shuttle astronauts were expected just to tolerate any stressors that arose during their mission and were successful at doing so (Whitmire et al, 2013). While it is possible to deal with stressors such as social isolation and to live with incompatible crewmembers for two weeks on shuttle, ignoring it is much less likely to be a successful coping mechanism on station. For the longer missions of the ISS, astronauts require a larger, more robust set of coping skills and more psychological support. Evidence of this are the number of BHPs Operational Psychology (Op Psy) staff who have been awarded silver Snoopys by long duration astronauts, in the statements of praise for the Op Psy and Family Support Office teams, and in the written and oral statements from flown astronauts regarding difficulty of longer missions and how much Op Psy helped
