75 research outputs found

    Nonclassical correlations of photon number and field components in the vacuum state

    Get PDF
    It is shown that the quantum jumps in the photon number n from zero to one or more photons induced by backaction evasion quantum nondemolition measurements of a quadrature component x of the vacuum light field state are strongly correlated with the quadrature component measurement results. This correlation corresponds to the operator expectation value which is equal to one fourth for the vacuum even though the photon number eigenvalue is zero. Quantum nondemolition measurements of a quadrature component can thus provide experimental evidence of the nonclassical operator ordering dependence of the correlations between photon number and field components in the vacuum state.Comment: 13 pages, 3 figures, corrections of omissions in equations (6) and (25). To be published in Phys. Rev.

    Soliton back-action evading measurement using spectral filtering

    Get PDF
    We report on a back-action evading (BAE) measurement of the photon number of fiber optical solitons operating in the quantum regime. We employ a novel detection scheme based on spectral filtering of colliding optical solitons. The measurements of the BAE criteria demonstrate significant quantum state preparation and transfer of the input signal to the signal and probe outputs exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of the experiment.Comment: 5 pages, 5 figure

    Nonclassical correlations of phase noise and photon number in quantum nondemolition measurements

    Get PDF
    The continuous transition from a low resolution quantum nondemolition measurement of light field intensity to a precise measurement of photon number is described using a generalized measurement postulate. In the intermediate regime, quantization appears as a weak modulation of measurement probability. In this regime, the measurement result is strongly correlated with the amount of phase decoherence introduced by the measurement interaction. In particular, the accidental observation of half integer photon numbers preserves phase coherence in the light field, while the accidental observation of quantized values increases decoherence. The quantum mechanical nature of this correlation is discussed and the implications for the general interpretation of quantization are considered.Comment: 16 pages, 5 figures, final version to be published in Phys. Rev. A, Clarifications of the nature of the measurement result and the noise added in section I

    On the origin of M81 group extended dust emission

    Get PDF
    Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250 mu m) emission correlates spatially very well with a particular narrow-velocity (2-3 km s(-1)) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variation

    Cavity-enhanced direct frequency comb spectroscopy

    Full text link
    Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from a several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure

    Quantum-nondemolition criteria in traveling-wave second-harmonic generation

    Get PDF
    Using the full nonlinear equations of motion, we calculate the quantum-nondemolition (QND) correlations for the traveling-wave second-harmonic generation. We find that, after a short interaction length, these are qualitatively different from results calculated previously using a linearized fluctuation analysis. We demonstrate that, although individual QND criteria can be very good in certain regions, there is no region where all three of the standard criteria are perfect, as has previously been claimed. We also show that only the amplitude quadrature of the output field can be considered as a QND quantity, with the phase quadrature not satisfying all the criteria

    Quantum Measurement of a Coupled Nanomechanical Resonator -- Cooper-Pair Box System

    Get PDF
    We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Fock state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Mapping the Quality of Life and Unmet Needs of Urban Women with Metastatic Breast Cancer.

    Get PDF
    Enhancing quality of life and reducing the unmet needs of women are central to the successful management of advanced breast cancer. The objective of this study was to investigate the quality of life and support and information needs of urban women with advanced breast cancer. This study was conducted at four large urban hospitals in Melbourne, Australia. A consecutive sample of 105 women with advanced breast cancer completed a questionnaire that contained the European Organization of Research and Treatment of Cancer Quality of Life Q-C30 and the Supportive Care Needs Survey. Between one quarter and a third of the women reported difficulties with their physical, role and social functioning, and a little over a quarter of the women reported poor global health status. Fatigue was a problem for most women. The highest unmet needs were in the psychological and health information domains. Almost no differences in unmet needs were detected when comparing different demographic and disease characteristics of women. Health care providers should routinely monitor the quality of life and needs of women with advanced breast cancer to ensure that appropriate treatment, information or supportive services are made available
    corecore