6,578 research outputs found

    Interaction-induced backscattering in short quantum wires

    Get PDF
    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of a Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.Comment: 10 pages, 4 figure

    Electrochemical behavior of a titanium electrode in hydrazine solutions

    Get PDF
    The kinetics of the establishment of the oxidation-reduction potential of a titanium electrode upon contact with hydrazine was studied in different media: H2SO4, NaOH, and Na2SO4. It was found that the nature of the potential shift depends little on the medium. The initial potential determines the rate of potential displacement upon contact with hydrazine, which is explained by the different condition of the electrode's surface

    Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape

    Get PDF
    We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm. By taper cut-back, we observed that the dissipative landscape, i.e., a non-monotonic variation of the average beam power along the MMF, leads to modal transitions of self-cleaned beams along the taper length

    Relaxation and edge reconstruction in integer quantum Hall systems

    Get PDF
    The interplay between the confinement potential and electron-electron interactions causes reconstructions of Quantum Hall edges. We study the consequences of this edge reconstruction for the relaxation of hot electrons injected into integer quantum Hall edge states. In translationally invariant edges, the relaxation of hot electrons is governed by three-body collisions which are sensitive to the electron dispersion and thus to reconstruction effects. We show that the relaxation rates are significantly altered in different reconstruction scenarios.Comment: 8 pages, 3 figure

    Bulk and local magnetic susceptibility of ErB12

    Get PDF
    High precision measurements of magnetoresistance Δρ/ρ = f(T,H) and magnetization M(T,H) were carried out on single crystals of rare-earth dodecaboride ErB12ErB_{12} at temperatures in the interval 1.8-30 K in magnetic fields up to 70 kOe. The high accuracy of the experiments allowed us to perform numerical differentiation and analyze quantitatively the behavior of the derivative d(Δρ/ρ)/dH = f(T,H) and of the magnetic susceptibility χ(T,H) = dM/dH in paramagnetic and magnetically ordered (antiferromagnetic, TNT_N ≈ 6.7 K and TMT_M ≈ 5.85 K) phases of ErB12ErB_{12}. It was shown that negative magnetoresistance anomalies observed in present study in paramagnetic state of ErB12ErB_{12} may be consistently interpreted in the framework of a simple relation between resistivity and magnetization -Δρ/ρ ~ M2M^2

    Novel biomaterials: plasma-enabled nanostructures and functions

    Get PDF
    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials
    corecore