1,147 research outputs found
Synthesis and methane cracking activity of a silicon nitride supported vanadium nitride nanoparticle composite
The co-ammonolysis of V(NMe2)4 and Si(NHMe)4 with ammonia in THF and in the presence of ammonium triflate ([NH4][CF3SO3]) leads to the formation of monolithic gels. Pyrolysing these gels produces mesoporous composite materials containing nanocrystalline VN and amorphous silicon imidonitride. Elemental mapping indicated a thorough distribution of VN with no evidence of large cluster segregation. Whilst not active for ammonia synthesis, the silicon nitride based materials were found to possess activity for the COx-free production of H2 from methane, which makes them candidates for applications in which the presence of low levels of CO in H2 feedstreams is detrimental
Trivalent scandium, yttrium and lanthanide complexes with thia-oxa and selena-oxa macrocycles and crown ether coordination
Complexes of the oxa-thia macrocycles [18]aneO4S2, [15]aneO3S2 and the oxa-selena macrocycle [18]aneO4Se2 (L) of types [MCl2(L)]FeCl4 (M = Sc or Y) were prepared from [ScCl3(thf)3] or [YCl2(THF)5][YCl4(THF)2] and the ligand in anhydrous MeCN, using FeCl3 as a chloride abstractor. The [MI2(L)]I, [LaI3(L)] and [LuI2(L)]I have been prepared from the ligands and the appropriate anhydrous metal triiodide in MeCN. Complexes of type [LaI3(crown)] and [LuI2(crown)]I (crown = 18-crown-6, 15-crown-5) were made for comparison. Use of the metal iodide results in complexes with high solubility compared to the corresponding chlorides, although also with increased sensitivity to moisture. All complexes were characterised by microanalysis, IR, (1)H, (45)Sc and (77)Se NMR spectroscopy as appropriate. X-ray crystal structures are reported for [ScCl2([18]aneO4S2)][FeCl4], [ScI2([18]aneO4S2)]I, [YCl2(18-crown-6)]3[Y2Cl9], [YCl2([18]aneO4S2)][FeCl4], [LaI3(15-crown-5)], [LaI2(18-crown-6)(MeCN)]I, [LuI(18-crown-6)(MeCN)2]I2, [Lu(15-crown-5)(MeCN)2(OH2)]I3, [LaI3([18]aneO4S2)], [LaI([18]aneO4S2)(OH2)]I2, [LaI3([18]aneO4Se2)] and [LuI2([18]aneO4Se2)]I. In each complex all the neutral donor atoms of the macrocycles are coordinated to the metal centre, showing very rare examples of these oxophilic metal centres coordinated to thioether groups, and the first examples of coordinated selenoether donors. In some cases MeCN or adventitious water displaces halide ligands, but not the S/Se donors from La or Lu complexes. A complex of the oxa-tellura macrocycle [18]aneO4Te2, [ScCl2([18]aneO4Te2)][FeCl4] was isolated, but is unstable in MeCN solution, depositing elemental Te. YCl3 and 18-crown-6 produced [YCl2(18-crown-6)]3[Y2Cl9], the asymmetric unit of which contains two cations with a trans-YCl2 arrangement and a third with a cis-YCl2 group
Synthesis and structure of [CeF4(Me2SO)2]— a rare neutral ligand complex of a lanthanide tetrafluoride
Hydrated cerium(IV) fluoride dissolves in hot dimethylsulfoxide to form yellow [CeF4(Me2SO)2], the X-ray structure of which reveals a chain polymer with eight-coordinate cerium bound to two terminal and four bridging fluorines and two O-bonded Me2SO molecules. The complex was also characterised by IR, 1H and 19F{1H} NMR and UV/visible spectroscopies. Attempts to use [CeF4(Me2SO)2] as a synthon to prepare other complexes with phosphine oxides or 2,2?-bipyridyl were unsuccessful. Thorium(IV) fluoride hydrate does not react with boiling dmso.<br/
Bromostibine complexes of iron(II): hypervalency and reactivity
The halostibine complexes [CpFe(CO)2(SbMe2Br)][CF3SO3] and [CpFe(CO)2(SbMe2Br)][BF4] both contain significant interactions between the anion and the formally neutral Sb(III) ligand, which simultaneously displays Lewis acidic and Lewis basic properties. The unexpected secondary product [CpFe(CO)(Me2BrSb-?-Br-SbBrMe2)] is formed in the presence of excess ligand, the strongly associated Br– anion bridging the two Sb donors to form a four-membered FeSb2Br ring.<br/
Neutral thioether and selenoether macrocyclic coordination to Group 1 cations (Li–Cs) – synthesis, spectroscopic and structural properties
The complexes [M(L)][BArF] (BArF = tetrakis{3,5-bis(trifluoromethyl)-phenyl}borate), L = [18]aneO4S2 (1,4,10,13-tetraoxa-7,16-dithiacyclooctadecane): M = Li–Cs; L = [18]aneO2S4 (1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane): M = Li, Na, K; L = [18]aneO4Se2 (1,4,10,13-tetraoxa-7,16-diselenacyclooctadecane): M = Na, K, as well as [Na(18-crown-6)][BArF], are obtained in good yield as crystalline solids by reaction of M[BArF] with the appropriate macrocycle in dry CH2Cl2. X-ray crystallographic analyses of [Li([18]aneO4S2)][BArF] and [Li([18]aneO2S4)][BArF] show discrete distorted octahedral cations with hexadentate coordination to the macrocycle. The heavier alkali metal complexes all contain hexadentate coordination of the heterocrown, supplemented by M?F interactions via the anions, producing extended structures with higher coordination numbers; Na: CN = 7 or 8; K: CN = 8; Rb: CN = 9; Cs: CN = 8 or 10. Notably, all of the structures exhibit significant M–S/Se coordination. The crystal structures of the potassium and rubidium complexes show two distinct [M(heterocrown)]+ cations, one with M?F interactions to two mutually cis [BArF]? anions, and the other with mutually trans [BArF]? anions, giving 1D chain polymers. Solution multinuclear (1H, 13C, 7Li, 23Na, 133Cs) NMR data show that the macrocyclic coordination is retained in CH2Cl2 solution
Unique Group 1 cations stabilised by homoleptic neutral phosphine coordination
Homoleptic coordination of the neutral diphosphines Me2P(CH2)2PMe2 and o-C6H4(PMe2)2 to the hard Li+ and Na+ cations is achieved using Li[Al{OC(CF3)3}4] and Na[B{3,5-(CF3)2-C6H3}4] as ‘naked’ cation sources. Crystallographic, solid state and solution multinuclear NMR studies confirm distorted octahedral coordination solely via three chelating diphosphines in these unique species
Electrodeposition from supercritical fluids
Recent studies have shown that it is possible to electrodeposit a range of materials, such as Cu, Ag and Ge, from various supercritical fluids, including hydrofluorocarbons and mixtures of CO2 with suitable co-solvents. In this perspective we discuss the relatively new field of electrodeposition from supercritical fluids. The perspective focuses on some of the underlying physical chemistry and covers both practical and scientific aspects of electrodeposition from supercritical fluids. We also discuss possible applications for supercritical fluid electrodeposition and suggest some key developments that are required to take the field to the next stage
Complexes of Group 2 dications with soft thioether- and selenoether-containing macrocycles
A new route to cationic complexes of Mg, Ca, Sr and Ba with 18-membered ring O4S2, O4Se2 and O2S4 donor macrocycles from metal acetonitrile complexes with weakly coordinating [BArF]? anions is described. The precursors used were [M(MeCN)x][BArF]2 (M = Mg, x = 6; M = Ca, x = 8) and [M?(acacH)(MeCN)5][BArF]2 (M? = Sr or Ba). Reaction of these with the heterocrowns, [18]aneO4S2 (1,4,10,13-tetraoxa-7,16-dithiacyclooctadecane), [18]aneO4Se2 (1,4,10,13-tetraoxa-7,16-diselenacyclooctadecane) or [18]aneO2S4 (1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane) in anhydrous CH2Cl2 solution gave [M(heterocrown)(MeCN)2][BArF]2 for M = Mg, Ca or Sr, whilst the larger Ba forms [Ba(heterocrown)(acacH)(MeCN)][BArF]2. The complexes have been characterised by microanalysis, IR, 1H and 13C{1H} NMR spectroscopy. X-ray crystal structures are reported for [Ca([18]aneO2S4)(MeCN)2][BArF]2, [Ca([18]aneO4Se2)(MeCN)2][BArF]2, [Sr([18]aneO4S2)(MeCN)2][BArF]2, and [Sr([18]aneO4Se2)(MeCN)2][BArF]2 which contain 8-coordinate metal centres with trans-nitrile ligands and ?6-heterocrowns, and for the 9-coordinate [Ba([18]aneO4Se2)(acacH)(MeCN)][BArF]2. Adventitious hydrolysis of the magnesium complexes in solution results in six-coordinate complexes, [Mg(?3-[18]aneO4Se2)(OH2)2(MeCN)][BArF]2 and [Mg(?3-[18]aneO4S2)(OH2)2(MeCN)][BArF]2, whose structures were determined. X-ray crystal structures are also reported for [Mg(MeCN)6][BArF]2, [M(MeCN)8][BArF]2 (M = Ca, Sr) and [Ca(18-crown-6)(MeCN)2][BArF]
Niobium tetrahalide complexes with neutral diphosphine ligands
The reactions of NbCl4 with diphosphine ligands o-C6H4(PMe2)2, Me2PCH2CH2PMe2 or Et2PCH2CH2PEt2 in a 1:2 molar ratio in MeCN solution produced eight-coordinate [NbCl4(diphosphine)2]. [NbBr4(diphosphine)2] (diphosphine = o-C6H4(PMe2)2 or Me2PCH2CH2PMe2) were made similarly from NbBr4. X-ray crystal structures show that [NbCl4{o-C6H4(PMe2)2)2}] has a dodecahedral geometry but the complexes with dimethylene backboned diphosphines are distorted square antiprisms. The Nb-P and <P-Nb-P angles are very similar in the two types, but Nb-Cl distances are ~ 0.1Å longer in the square antiprismatic complexes. These paramagnetic (d1) complexes were also characterised by microanalysis, magnetic measurements, IR and UV-visible spectroscopy. Using a 1:1 molar ratio of NbCl4 : diphosphine (diphosphine = Me2PCH2CH2PMe2, Et2PCH2CH2PEt2, Cy2PCH2CH2PCy2 and Ph2PCH2CH2CH2PPh2) afforded [NbCl4(diphosphine)] and [NbBr4(Me2PCH2CH2PMe2)] was obtained similarly. These 1 : 1 complexes are unstable in solution, preventing X-ray crystallographic study, but based upon their diamagnetism, IR, UV-visible and 31P{1H} NMR spectra they are formulated as halide-bridged dimers [(diphosphine)X2Nb(μ-X)4NbX2(diphosphine)] with single Nb-Nb bonds and chelating diphosphines. The Nb(IV) complexes are prone to hydrolysis and oxidation in solution and the structures of the Nb(V) complexes [NbBr4(Me2PCH2CH2PMe2)2][NbOBr4(MeCN)] with a dodecahedral cation, and [{NbOCl3{Et2P(CH2)2PEt2}}2{μ-Et2P(CH2)2PEt2}] which contains seven-coordinate Nb(V) centres with a symmetrical diphosphine bridge are reported. The structure of niobium tetrabromide, conveniently made from NbCl4 and BBr3, is a chain polymer with edge-linked NbBr6 octahedra and alternating long and short Nb-Nb distances, the latter ascribed to Nb-Nb bonds
Structural and magnetic properties of Mn3-xCdxTeO6 (x = 0, 1, 1.5 and 2)
Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic
structure involving two magnetic orbits for the Mn atoms [*]. Mn3-xCdxTeO6
(x=0, 1, 1.5 and 2) ceramics were synthesized by solid state reaction and
investigated using X-ray powder diffraction, electron microscopy, calorimetric
and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting
the structure of the compound. The Mn and Cd cations were found to be randomly
distributed over the A-site. Magnetization measurements indicated that the
samples order antiferromagnetically at low temperature with a transition
temperature that decreases with increasing Cd doping. The nuclear and magnetic
structure of one specially prepared 114Cd containing sample:
Mn1.5(114Cd)1.5TeO6, was studied using neutron powder diffraction over the
temperature range 2 to 295 K. Mn1.5(114Cd)1.5TeO6 was found to order in an
incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [*].
However, with a lower transition temperature and the extension of the ordered
structure confined to order 240(10) {\AA}. [*] S. A. Ivanov et al. Mater. Res.
Bull. 46 (2011) 1870.Comment: 20 pages, 8 figure
- …
