101 research outputs found

    COVID-19 crisis and resilience: challenges for the insurance sector

    Get PDF
    The main role of the insurance sector is the coverage of risks through pooling techniques. Against the payment of a premium, the insurance company compensates for unexpected losses, including catastrophic events and pandemics. However, differently from a catastrophic event, the COVID-19 pandemic has highlighted that the global impact on economic and financial activities is highly correlated. The insurance sector itself has been strongly affected both by the exponential growth of claims in the life and non-life sectors and by the negative impact on financial activities. Past experiences in pandemic risk management have been unsuccessful. This paper retraces the instruments issued following the past pandemics and tries to reflect on how the insurance sector can implement innovative solutions to support post-pandemic resilience

    Longevity risk and economic growth in sub-populations: evidence from Italy

    Get PDF
    Forecasting mortality is still a big challenge for Governments that are interested in reliable projections for defining their economic policy at local and national level. The accuracy of mortality forecasting is considered an important issue for longevity risk management. In the literature, many authors have analyzed the long-run relationship between mortality evolution and socioeconomic variables, such as economic growth, unemployment rate or educational level. This paper investigates the existence of a link between mortality and real gross domestic product per capita (GDPPC) over time in the Italian regions. Empirical evidence shows the presence of a relationship between mortality and the level of real GDPPC (and not its trend). Therefore, we propose a multi-population model including the level of real GDPPC and we compare it with the Boonen–Li model (Boonen and Li in Demography 54:1921–1946, 2017). The validity of the model is tested in the out-of-sample forecasting experiment

    Neural Networks for quantile claim amount estimation: aq auntile regression approach

    Get PDF
    In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-partmodel scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation

    A proposed index of myocardial staining for vein of Marshall ethanol infusion: an Italian single-center experience.

    Get PDF
    Background: Mitral isthmus (MI) conduction block is a fundamental step in anatomical approach treatment for persistent atrial fibrillation (PeAF). However, MI block is hardly achievable with endocardial ablation only. Retrograde ethanol infusion (EI) into the vein of Marshall (VOM) facilitates MI block. Fluorographic myocardial staining (MS) during VOM-EI could be helpful in predicting procedural alcoholization outcome even if its role is qualitatively assessed in the routine. The aim was to quantitatively assess MS during VOM-EI and to evaluate its association with MI block achievement. Methods: Consecutive patients undergoing catheter ablation for PeAF at Fondazione Toscana Gabriele Monasterio (Pisa, Italy) from February 2022 to May 2023 were considered. Patients with identifiable VOM were included. A proposed index of MS (MSI) was retrospectively calculated in each included patient. Correlation of MSI with low-voltage zones (LVZ) extension after VOM-EI and its association with MI block achievement were assessed. Results: In total, 42 patients out of 49 (85.8%) had an identifiable VOM. MI block was successfully achieved in 35 patients out of 42 (83.3%). MSI was significantly associated with the occurrence of MI block (OR 1.24 (1.03-1.48); p = 0.022). A higher MSI resulted in reduced ablation time (p = 0.014) and reduced radiofrequency applications (p = 0.002) to obtain MI block. MSI was also associated with MI block obtained by endocardial ablation only (OR 1.07 (1.02-1.13); p = 0.002). MSI was highly correlated with newly formed LVZ extension (r = 0.776; p = 0.001). Conclusions: In our study cohort, optimal MSI predicts MI block and facilitates its achievement with endocardial ablation only

    Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment : a review

    Get PDF
    Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.The authors acknowledge the financial support to the project PTDC/EBB-EBI/103147/2008 and the grant SFRH/BPD/48962/2008 provided by Fundacao para a Ciencia e Tecnologia (Portugal)

    Nutraceutical therapies for atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed

    Mutual peer-to-peer insurance: The allocation of risk

    No full text
    This work focuses on a modern typology through which mutual solidarity in the insurance sector finds application: peer-to-peer insurance. This cooperative insurance model arises from the translation of the sharing economy concept into insurance risk management, and it is realized thanks to the use of digital technology connecting policyholders and sharing risks. The participants to a peer-to-peer insurance scheme share the first layer of their cumulative losses, while it is possible to transfer to a third part the higher layer. To enter the mutual group, each participant has to pay an initial contribution based on a risk-sharing rule that has to be intuitive and transparent. According to the most considered conditional mean risk-sharing rule, the participant has to contribute with an amount equal to the expected value of the risk he brings to the pool given the total loss distribution. We propose to modify the conditional mean risk-sharing rule with an ex-ante contribution that takes into account a safety loading to hedge the possible fluctuations of total losses

    Predicting the second wave of COVID-19 pandemic through the Dynamic Evolving Neuro Fuzzy Inference System

    No full text
    In this paper, we make a prediction of the second wave of COVID-19 using a dynamic evolving neuro-fuzzy inference system (DENFIS). The model choice is motivated by the fact that the spread of the pandemic must be read in its dynamism and every prediction cannot ignore the daily updating of available data and new information. We provide results of the prediction of the second wave of COVID-19 across Europe, soliciting to update the model day by day as new information occurs. The study offers to public health stakeholders and Governments a useful tool to analyze the effectiveness of the virus containment measures in the short run and for controlling the COVID-19 spread

    Clustering-based simultaneous forecasting of life expectancy time series through Long-Short Term Memory Neural Networks

    No full text
    In this paper, we apply a functional clustering method to the multivariate time series of life expectancy at birth of the female populations collected in the Human Mortality Database. We reconstruct the functional form of life expectancy from the available discrete observations and derive the curves through non-parametric smoothing. Once the clustering is realized, we perform the life expectancy simultaneous forecasting of the countries inside each cluster implementing a multivariate Long-Short Term Memory neural network. Although functional clustering has already been used in the actuarial literature, in this work it is applied for the first time to the study of life expectancy. The originality of the work also lies in the combination of a functional clustering approach with simultaneous forecasting obtained through the Long-Short Term Memory. We point out that such a combination provides a more informative outlook of the evolution of life expectancy, allowing us to depict country-specific longevity consistently with acknowledged mortality profiles. The results show that the evolution of developed countries follows a homogeneous pattern and supports the persisting homogeneity within the high longevity cluster over time. Moreover, we find a remarkable cross-country heterogeneity in the medium-low longevity cluster. By exploiting the cluster information, we improve the simultaneous forecasting of life expectancy time series using Long Short Term Memory neural networks and compare the error forecast of our approach with those of the classical VAR model, showing a better performance of the former when considering the cluster average errors
    • …
    corecore