53 research outputs found
A New Computationally Simple Approach for Implementing Neural Networks with Output Hard Constraints
A new computationally simple method of imposing hard convex constraints on
the neural network output values is proposed. The key idea behind the method is
to map a vector of hidden parameters of the network to a point that is
guaranteed to be inside the feasible set defined by a set of constraints. The
mapping is implemented by the additional neural network layer with constraints
for output. The proposed method is simply extended to the case when constraints
are imposed not only on the output vectors, but also on joint constraints
depending on inputs. The projection approach to imposing constraints on outputs
can simply be implemented in the framework of the proposed method. It is shown
how to incorporate different types of constraints into the proposed method,
including linear and quadratic constraints, equality constraints, and dynamic
constraints, constraints in the form of boundaries. An important feature of the
method is its computational simplicity. Complexities of the forward pass of the
proposed neural network layer by linear and quadratic constraints are O(n*m)
and O(n^2*m), respectively, where n is the number of variables, m is the number
of constraints. Numerical experiments illustrate the method by solving
optimization and classification problems. The code implementing the method is
publicly available
Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression
A new method for estimating the conditional average treatment effect is
proposed in the paper. It is called TNW-CATE (the Trainable Nadaraya-Watson
regression for CATE) and based on the assumption that the number of controls is
rather large whereas the number of treatments is small. TNW-CATE uses the
Nadaraya-Watson regression for predicting outcomes of patients from the control
and treatment groups. The main idea behind TNW-CATE is to train kernels of the
Nadaraya-Watson regression by using a weight sharing neural network of a
specific form. The network is trained on controls, and it replaces standard
kernels with a set of neural subnetworks with shared parameters such that every
subnetwork implements the trainable kernel, but the whole network implements
the Nadaraya-Watson estimator. The network memorizes how the feature vectors
are located in the feature space. The proposed approach is similar to the
transfer learning when domains of source and target data are similar, but tasks
are different. Various numerical simulation experiments illustrate TNW-CATE and
compare it with the well-known T-learner, S-learner and X-learner for several
types of the control and treatment outcome functions. The code of proposed
algorithms implementing TNW-CATE is available in
https://github.com/Stasychbr/TNW-CATE
- …