12,524 research outputs found
Determination of the internal structure of neutron stars from gravitational wave spectra
In this paper the internal structure of a neutron star is shown to be
inferrable from its gravitational-wave spectrum. Iteratively applying the
inverse scheme of the scaled coordinate logarithmic perturbation method for
neutron stars proposed by Tsui and Leung [Astrophys. J. {\bf 631}, 495 (2005)],
we are able to determine the mass, the radius and the mass distribution of a
star from its quasi-normal mode frequencies of stellar pulsation. In addition,
accurate equation of state of nuclear matter can be obtained from such
inversion scheme. Explicit formulas for the case of axial -mode oscillation
are derived here and numerical results for neutron stars characterized by
different equations of state are shown.Comment: 26 pages, 14 figures, submitted to Physical Review
Ab initio molecular dynamics study of manganese porphine hydration and interaction with nitric oxide
The authors use ab initio molecular dynamics and the density functional
theory+U (DFT+U) method to compute the hydration environment of the manganese
ion in manganese (II) and manganese (III) porphines (MnP) dispersed in liquid
water. These are intended as simple models for more complex water soluble
porphyrins, which have important physiological and electrochemical
applications. The manganese ion in Mn(II)P exhibits significant out-of-porphine
plane displacement and binds strongly to a single H2O molecule in liquid water.
The Mn in Mn(III)P is on average coplanar with the porphine plane and forms a
stable complex with two H2O molecules. The residence times of these water
molecules exceed 15 ps. The DFT+U method correctly predicts that water
displaces NO from Mn(III)P-NO, but yields an ambiguous spin state for the
MnP(II)-NO complex.Comment: 10 pages, 6 figure
Recommended from our members
Characterization of silicon nanowire by use of full-vectorial finite element method.
We have carried out a rigorous H-field-based full-vectorial modal analysis and used it to characterize, more accurately, the abrupt dielectric discontinuity of a high index contrast optical waveguide. The full-vectorial H and E fields and the Poynting vector profiles are described in detail. It has been shown through this work that the mode profile of a circular silicon nanowire is not circular and also contains a strong axial field component. The single-mode operation, vector field profiles, modal hybridness, modal ellipticity, and group velocity dispersion of this silicon nanowire are also presented
Heuristic derivation of continuum kinetic equations from microscopic dynamics
We present an approximate and heuristic scheme for the derivation of
continuum kinetic equations from microscopic dynamics for stochastic,
interacting systems. The method consists of a mean-field type, decoupled
approximation of the master equation followed by the `naive' continuum limit.
The Ising model and driven diffusive systems are used as illustrations. The
equations derived are in agreement with other approaches, and consequences of
the microscopic dependences of coarse-grained parameters compare favorably with
exact or high-temperature expansions. The method is valuable when more
systematic and rigorous approaches fail, and when microscopic inputs in the
continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include
Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials
Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge
couplings when an external magnetic field is present. In this paper, we show
that chiral symmetry is restored above a critical chemical potential and the
corresponding phase transition is of first order. In contrast, the chiral
symmetry restoration at high temperatures (and at zero chemical potential) is a
second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include
Random access quantum information processors
Qubit connectivity is an important property of a quantum processor, with an
ideal processor having random access -- the ability of arbitrary qubit pairs to
interact directly. Here, we implement a random access superconducting quantum
information processor, demonstrating universal operations on a nine-bit quantum
memory, with a single transmon serving as the central processor. The quantum
memory uses the eigenmodes of a linear array of coupled superconducting
resonators. The memory bits are superpositions of vacuum and single-photon
states, controlled by a single superconducting transmon coupled to the edge of
the array. We selectively stimulate single-photon vacuum Rabi oscillations
between the transmon and individual eigenmodes through parametric flux
modulation of the transmon frequency, producing sidebands resonant with the
modes. Utilizing these oscillations for state transfer, we perform a universal
set of single- and two-qubit gates between arbitrary pairs of modes, using only
the charge and flux bias of the transmon. Further, we prepare multimode
entangled Bell and GHZ states of arbitrary modes. The fast and flexible
control, achieved with efficient use of cryogenic resources and control
electronics, in a scalable architecture compatible with state-of-the-art
quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21
page
- …