15,126 research outputs found
Ordering dynamics of the driven lattice gas model
The evolution of a two-dimensional driven lattice-gas model is studied on an
L_x X L_y lattice. Scaling arguments and extensive numerical simulations are
used to show that starting from random initial configuration the model evolves
via two stages: (a) an early stage in which alternating stripes of particles
and vacancies are formed along the direction y of the driving field, and (b) a
stripe coarsening stage, in which the number of stripes is reduced and their
average width increases. The number of stripes formed at the end of the first
stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus,
depending on this parameter, the resulting state could be either single or
multi striped. In the second, stripe coarsening stage, the coarsening time is
found to be proportional to L_y, becoming infinitely long in the thermodynamic
limit. This implies that the multi striped state is thermodynamically stable.
The results put previous studies of the model in a more general framework
On vanishing sums of th roots of unity in finite fields
In an earlier work, the authors have determined all possible weights for
which there exists a vanishing sum of th roots
of unity in characteristic 0. In this paper, the same problem is
studied in finite fields of characteristic . For given and , results
are obtained on integers such that all integers are in the
``weight set'' . The main result in this paper guarantees,
under suitable conditions, the existence of solutions of
with all coordinates not equal to zero over a finite field
ERS-1 SAR data processing
To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated
Properties of a magnetic superconductor with weak magnetization - application to
Using a Ginsburg-Landau free energy functional, we study the phase
diagram of a weak magnetic superconductor, where the magnetization from the
magnetic component is marginal in supporting a spontaneous vortex phase in
absence of external magnetic field. In particular, the competition between the
spiral state and spontaneous vortex phase is analysed. Our theory is applied to
understand the magnetic properties of .Comment: 13 pages, 4 postscript figure
Comment on ``Dynamic behavior of anisotropic non-equilibrium driving lattice gases''
In a recent Letter Albano and Saracco study the dynamic critical behavior of
some anisotropic driven lattice gases by Monte Carlo (MC) simulations. In this
Comment we point out that the Ans\"atze they use to relate the measured scaling
exponents with the critical exponents analytically computed within different
field-theoretical approaches do not take properly into account the strongly
anisotropic nature of the phase transition, by implicitly assuming
. As a consequence, at variance with the claims
by the authors, their MC data are not conclusive to determine which one of the
field theories proposed in the literature correctly describes the universal
properties of the phase transition in these lattice gases.Comment: 1 pag
Novel Phases and Finite-Size Scaling in Two-Species Asymmetric Diffusive Processes
We study a stochastic lattice gas of particles undergoing asymmetric
diffusion in two dimensions. Transitions between a low-density uniform phase
and high-density non-uniform phases characterized by localized or extended
structure are found. We develop a mean-field theory which relates
coarse-grained parameters to microscopic ones. Detailed predictions for
finite-size () scaling and density profiles agree excellently with
simulations. Unusual large- behavior of the transition point parallel to
that of self-organized sandpile models is found.Comment: 7 pages, plus 6 figures uuencoded, compressed and appended after
source code, LATeX, to be published as a Phys. Rev. Let
- …