325 research outputs found

    The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly (ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs)

    Get PDF
    The combination of synchrotron Small- and Wide-Angle X-ray scattering (SAXS/WAXS), and thermal analysis was used to follow the evolution of crystalline morphology and crystallization kinetics in a series of melt-processed composites of poly(ethylene terephthalate) (PET) and multiwall carbon nanotubes (MWCNT). The as-extruded PET-MWCNT composites underwent both hot and cold isothermal crystallizations where a final oriented nanohybrid shish-kebab (NHSK) crystalline structure was observed. An oriented NHSK structure was seen to persist even after melting and recrystallization of the composites. From the scattering data, we propose a model whereby the oriented MWCNTs act as heterogeneous nucleation surfaces (shish) and the polymer chains wrap around them and the crystallites (kebabs) grow epitaxially outwards during crystallization. However, depending on crystallization temperature, unoriented crystallites also grow in the polymer matrix, resulting in a combination of a NHSK and lamellar morphology. In contrast, the neat PET homopolymer showed the sporadic nucleation of a classic unoriented lamellar structure under the same isothermal crystallization conditions. These results provide a valuable insight into the distinctive modification of the crystalline morphology of melt-processed polymer-MWCNT composites prior to any secondary processing, having a significant impact on the use of MWCNTs as fillers in the processing and modification of the physical and mechanical properties of engineering polymers

    Modification of an Implant Material

    Get PDF
    Titanium metal is a commonly used implant material which can be colonized by bacteria. Biofilms are formed when bacteria colonizes, attaches to a surface, and immobilizes. Bacterial infections or biofilms are hard to treat once formed on the surface of a metal implant. Coating the material may minimize bacteria attachment. Self-assembled monolayers are comprised of molecules that contain both a head and tail group, and can be used to coat metal to prevent biofilm formation and bacteria growth. 12-mercaptododecylphosphonic acid self-assembled monolayers have a phosphonic acid head group and a thiol tail group. A solution of 12-mercaptododecylphosphonic acid in tetrahydrofuran was used to form self-assembled monolayers on the surface of titanium. Diffuse reflectance infrared Fourier transform spectroscopy was used to evaluate the attachment of the self-assembled monolayers. Alkyl-chain ordered self-assembled monolayers formed on the titanium surface, with the thiol tail group free at the interface for additional reactions. The monolayer attachment strength was further tested through acid, base, and tape tests

    Social, Cultural and Behavioral Determinants of Health among Hawaii Filipinos: The Filipino Healthy Communities Project

    Get PDF
    Background/Purpose: Filipinos are Hawaii’s largest immigrant group and second largest ethnic group. The Hawaii Filipino Health Communities Project was initiated by the Hawaii State Department of Health, because of the high rates of heart disease and stroke mortality, and other behavioral risks seen among Hawaii’s Filipino population (i.e. high smoking rates among Filipino men). The project sought to gather Filipino community members’ perspectives on why such chronic disease health disparities exist for Filipinos, and identify solutions to address them. Methods: The project gathered information from both immigrant and local Filipinos throughout the state, using community engagement methods of interviews with community leaders (n=20) and community-based focus groups (n=20 groups with 130 participants), Results: Filipino community members were aware of, and community leaders well-versed in, the behavioral, cultural, and social determinants of health in their communities. However, being aware of such determinants of health has yet not resulted in changed behavior in the overall Filipino community (i.e. improved diet, increased physical activity, or better access to healthcare). Conclusion: More outreach is needed with Filipinos, along with interventions to combat health disparities in chronic disease, such as increased smoking cessation and creative ways to eat healthier and increase physical activit

    Structure evolution in poly(ethylene terephthalate) (PET) - Multi-walled carbon nanotube (MWCNT) composite films during <i>in-situ</i> uniaxial deformation

    Get PDF
    Combined small- and wide-angle X-ray scattering (SAXS/WAXS), mechanical and thermal techniques have been used to follow the morphology evolution in a series of poly(ethylene terephthalate) (PET) multiwall carbon nanotube (MWCNT) composite films during quasi solid-state uniaxial deformation at low strain rates. Uniaxially deformed PET-MWCNT films displayed improved mechanical properties compared with unfilled PET films. SAXS/WAXS data revealed a well oriented lamellar structure for unfilled PET films. In contrast, the PET-MWCNT composites revealed a nanohybrid shish-kebab (NHSK) morphology, with reduced orientation and crystallinity. Mechanistically, this morphology development is attributed to the MWCNTs acting as shish for the epitaxial growth of PET crystallites. Furthermore, nucleation and crystal growth occurs in the PET matrix, but MWCNTs ultimately inhibit crystallite development and hinder a final lamellar structure developing. The results show unequivocally the role MWCNTs play as nanofillers, in the morphology development, thermal and mechanical properties in composite polymer films

    Rosette-Disrupting Effect of an Anti-Plasmodial Compound for the Potential Treatment of Plasmodium falciparum Malaria Complications

    Get PDF
    The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality

    Lensing in the Blue II: Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Full text link
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue.Comment: Submitted to Astronomical Journa
    corecore