762 research outputs found

    Spin tunneling and topological selection rules for integer spins

    Full text link
    We present topological interference effects for the tunneling of a single large spin, which are caused by the symmetry of a general class of magnetic anisotropies. The interference originates from spin Berry phases associated with different tunneling paths exposed to the same dynamics. Introducing a generalized path integral for coherent spin states, we evaluate transition amplitudes between ground as well as low-lying excited states. We show that these interference effects lead to topological selection rules and spin-parity effects for integer spins that agree with quantum selection rules and which thus provide a generalization of the Kramers degeneracy to integer spins. Our results apply to the molecular magnets Mn12 and Fe8.Comment: 4 pages, 3 EPS figures, REVTe

    Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition

    Full text link
    We investigate the dynamics of a large anisotropic spin whose easy-axis component is coupled to a bosonic bath with a spectral function J(\w)\propto \omega^s. Such a spin complex might be realized in a single-molecular magnet. Using the non-perturbative renormalization group, we calculate the line of quantum-phase transitions in the sub-ohmic regime (s<1s<1). These quantum-phase transitions only occur for integer spin JJ. For half-integer JJ, the low temperature fixed-point is identical to the fixed-point of the spin-boson model without quantum-tunneling between the two levels. Short-time coherent oscillations in the spin decay prevail even into the localized phase in the sub-ohmic regime. The influence of the reorganization energy and the recurrence time on the decoherence in the absence of quantum-tunneling is discussed.Comment: 14 pages,7 figure

    Reply to the comment of Chudnovsky&Garanin on "Spin relaxation in Mn12-acetate"

    Full text link
    Reply to the comment of E.M. Chudnovsky and D.A. Garanin on Europhys. Lett. 46, 692 (1999).Comment: 2 pages, Latex (europhys.sty

    Spin relaxation in Mn12-acetate

    Full text link
    We present a comprehensive derivation of the magnetization relaxation in a Mn12-acetate crystal based on thermally assisted spin tunneling induced by quartic anisotropy and weak transverse magnetic fields. The overall relaxation rate as function of the magnetic field is calculated and shown to agree well with data including all resonance peaks. The Lorentzian shape of the resonances is also in good agreement with recent data. A generalized master equation including resonances is derived and solved exactly. It is shown that many transition paths with comparable weight exist that contribute to the relaxation process. Previously unknown spin-phonon coupling constants are calculated explicitly.Comment: 4 pages,4 EPS figures,LaTeX(europhys.sty);final version accepted for EP

    Measurements of CO2, its stable isotopes, O2/N2, and 222Rn at Bern, Switzerland

    Get PDF
    A one-year time series of atmospheric CO2 measurements from Bern, Switzerland, is presented. O2/N2 and Ar/N2 ratios as well as stable carbon and oxygen isotopes of CO2 and δ29N2, δ34O2 and δ36Ar were measured periodically during a one year period. Additionally, the 222Rn activity was measured during three months in the winter 2004. Using the correlation from short-term fluctuations of CO2 and 222Rn we estimated a mean CO2 flux density between February 2004 and April 2004 in the region of Bern of 95±39 tC km–2month–1. The continuous observations of carbon dioxide and associated tracers shed light on diurnal and seasonal patterns of the carbon cycle in an urban atmosphere. There is considerable variance in nighttime δ13C and δ18O of source CO2 throughout the year, however, with generally lower values in winter compared to summertime. The O2:CO2 oxidation ratio during the nighttime build-up of CO2 varies between –0.96 and –1.69 mol O2/mol CO2. Furthermore, Ar/N2 measurements showed that artifacts like thermal fractionation at the air intake are relevant for high precision measurements of atmospheric O2

    Spin electric effects in molecular antiferromagnets

    Full text link
    Molecular nanomagnets show clear signatures of coherent behavior and have a wide variety of effective low-energy spin Hamiltonians suitable for encoding qubits and implementing spin-based quantum information processing. At the nanoscale, the preferred mechanism for control of quantum systems is through application of electric fields, which are strong, can be locally applied, and rapidly switched. In this work, we provide the theoretical tools for the search for single molecule magnets suitable for electric control. By group-theoretical symmetry analysis we find that the spin-electric coupling in triangular molecules is governed by the modification of the exchange interaction, and is possible even in the absence of spin-orbit coupling. In pentagonal molecules the spin-electric coupling can exist only in the presence of spin-orbit interaction. This kind of coupling is allowed for both s=1/2s=1/2 and s=3/2s=3/2 spins at the magnetic centers. Within the Hubbard model, we find a relation between the spin-electric coupling and the properties of the chemical bonds in a molecule, suggesting that the best candidates for strong spin-electric coupling are molecules with nearly degenerate bond orbitals. We also investigate the possible experimental signatures of spin-electric coupling in nuclear magnetic resonance and electron spin resonance spectroscopy, as well as in the thermodynamic measurements of magnetization, electric polarization, and specific heat of the molecules.Comment: 31 pages, 24 figure

    Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques

    Get PDF
    Since 2004, atmospheric carbon dioxide (CO2) is being measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring-down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network were added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition – a prerequisite when merging two data sets, e.g., for trend determinations – the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows the identification of potential offsets between the two data sets and the collection of information about the compatibility of the two systems on different time scales. A good agreement of the seasonality, short-term variations and, to a lesser extent mainly due to the short common period, trend calculations is observed. However, the comparison reveals some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It is possible to adapt an improved calibration strategy based on standard gas determinations, which leads to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS – NDIR) of the two systems is −0.03 ppm ± 0.25 ppm. Although the difference of the two data sets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additional time for signal stabilization after switching the sample, an effective data coverage of only one-sixth for the KUP system is achieved while the Empa system has a nearly complete data coverage. Additionally, different internal volumes and flow rates may affect observed differences

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm

    Bryozoan stable carbon and hydrogen isotopes: relationships between the isotopic composition of zooids, statoblasts and lake water

    Get PDF
    0000-0001-7279-715X© Springer International Publishing Switzerland 2015. The attached document is the authors' final accepted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Optical Control of Field-Emission Sites by Femtosecond Laser Pulses

    Full text link
    We have investigated field emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses. Strongly asymmetric modulations of the field emission intensity distributions are observed depending on the polarization of the light and the laser incidence direction relative to the azimuthal orientation of tip apex. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity on the 10 nm scale. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively.Comment: 4 pages, submitted to Physical Review Letter
    • …
    corecore