138 research outputs found

    Loss of PRDX6 aborts proliferative and migratory signaling in hepatocarcinoma cell lines

    Get PDF
    Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxin family, has peroxidase, phospholipase A2 (PLA2), and lysophosphatidylcholine (LPC) acyltransferase (LPCAT) activities. It has been associated with tumor progression and cancer metastasis, but the mechanisms involved are not clear. We constructed an SNU475 hepatocarcinoma cell line knockout for PRDX6 to study the processes of migration and invasiveness in these mesenchymal cells. They showed lipid peroxidation but inhibition of the NRF2 transcriptional regulator, mitochondrial dysfunction, metabolic reprogramming, an altered cytoskeleton, down-regulation of PCNA, and a diminished growth rate. LPC regulatory action was inhibited, indicating that loss of both the peroxidase and PLA2 activities of PRDX6 are involved. Upstream regulators MYC, ATF4, HNF4A, and HNF4G were activated. Despite AKT activation and GSK3ÎČ inhibition, the prosurvival pathway and the SNAI1-induced EMT program were aborted in the absence of PRDX6, as indicated by diminished migration and invasiveness, down-regulation of bottom-line markers of the EMT program, MMP2, cytoskeletal proteins, and triggering of the “cadherin switch”. These changes point to a role for PRDX6 in tumor development and metastasis, so it can be considered a candidate for antitumoral therapies

    Evaluating the Impact of Interventions by a Multidisciplinary Pediatric Behavioral Health Medication Initiative Workgroup on Medication Prescribing Trends in a Medicaid Population

    Get PDF
    In 2011, the U.S. Government Accountability Office (GAO) reported foster and non-foster children in the MassHealth, Massachusetts Medicaid program, exhibited the highest rate of behavioral health medication (BHM) utilization, with 49.3% of all Medicaid children being prescribed a psychotropic medication, and 39.1% of children in foster care prescribed these medications. The MassHealth Pharmacy Program, which is managed by UMass Medical School, implemented a PBHMI Workgroup in November 2014 with the collaboration of the Department of Children and Families and the Department of Mental Health. The workgroup proactively requires prior authorization (PA) for specific medications or combinations of BHMs prescribed to members less than 18 years of age. Interventions include telephonic prescriber outreach by a child/adolescent psychiatrist to discuss opportunities for regimen simplification, drug interactions or toxicity, and to encourage evidence-based practices. An analysis of the workgroup suggests a peer-to-peer outreach program is associated with increased awareness and implementation of evidence based medicine in a pediatric population treated with behavioral health medications

    Interaction between p22(phox) and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation.

    Get PDF
    The p22(phox) protein is an essential component of the phagocytic- and inner ear NADPH oxidases but its relationship to other Nox proteins is less clear. We have studied the role of p22(phox) in the TGF-beta1-stimulated H2O2 production of primary human and murine fibroblasts. TGF-beta1 induced H2O2 release of the examined cells, and the response was dependent on the expression of both Nox4 and p22(phox). Interestingly, the p22(phox) protein was present in the absence of any detectable Nox/Duox expression, and the p22(phox) level was unaffected by TGF-beta1. On the other hand, Nox4 expression was dependent on the presence of p22(phox), establishing an asymmetrical relationship between the two proteins. Nox4 and p22(phox) proteins localized to the endoplasmic reticulum and their distribution was unaffected by TGF-beta1. We used a chemically induced protein dimerization method to study the orientation of p22(phox) and Nox4 in the endoplasmic reticulum membrane. This technique is based on the rapamycin-mediated heterodimerization of the mammalian FRB domain with the FK506 binding protein. The results of these experiments suggest that the enzyme complex produces H2O2 into the lumen of the endoplasmic reticulum, indicating that Nox4 contributes to the development of the oxidative milieu within this organelle

    When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2

    Full text link
    Aims: The dual oxidase 2 (DUOX2) protein belongs to the NADPH oxidase (NOX) family. As H2O2 generator, it plays a key role in both thyroid hormone biosynthesis and innate immunity. DUOX2 forms with its maturation factor, DUOX activator 2 (DUOXA2), a stable complex at the cell surface that is crucial for the H2O2-generating activity, but the nature of their interaction is unknown. The contribution of some cysteine residues located in the N-terminal ectodomain of DUOX2 in a surface protein?protein interaction is suggested. We have investigated the involvement of different cysteine residues in the formation of covalent bonds that could be of critical importance for the function of the complex. Results: We report the identification and the characterization of an intramolecular disulfide bond between cys-124 of the N-terminal ectodomain and cys-1162 of an extracellular loop of DUOX2, which has important functional implications in both export and activity of DUOX2. This intramolecular bridge provides structural support for the formation of interdisulfide bridges between the N-terminal domain of DUOX2 and the two extracellular loops of its partner, DUOXA2. Innovation: Both stability and function of the maturation factor, DUOXA2, are dependent on the oxidative folding of DUOX2, indicating that DUOX2 displays a chaperone-like function with respect to its partner. Conclusions: The oxidative folding of DUOX2 that takes place in the endoplasmic reticulum (ER) appears to be a key event in the trafficking of the DUOX2/DUOXA2 complex as it promotes an appropriate conformation of the N-terminal region, which is propitious to subsequent covalent interactions with the maturation factor, DUOXA2. Antioxid. Redox Signal. 23, 724?733.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140308/1/ars.2015.6265.pd

    Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects

    Get PDF
    Ras-related C3 botulinum toxin substrate 2 (RAC2), through interactions with reduced NAD phosphate oxidase component p67 phox , activates neutrophil superoxide production, whereas interactions with p21-activated kinase are necessary for fMLF-induced actin remodeling. We identified 3 patients with de novo RAC2[E62K] mutations resulting in severe T- and B-cell lymphopenia, myeloid dysfunction, and recurrent respiratory infections. Neutrophils from RAC2[E62K] patients exhibited excessive superoxide production, impaired fMLF-directed chemotaxis, and abnormal macropinocytosis. Cell lines transfected with RAC2[E62K] displayed characteristics of active guanosine triphosphate (GTP)-bound RAC2 including enhanced superoxide production and increased membrane ruffling. Biochemical studies demonstrated that RAC2[E62K] retains intrinsic GTP hydrolysis; however, GTPase-activating protein failed to accelerate hydrolysis resulting in prolonged active GTP-bound RAC2. Rac2+/E62K mice phenocopy the T- and B-cell lymphopenia, increased neutrophil F-actin, and excessive superoxide production seen in patients. This gain-of-function mutation highlights a specific, nonredundant role for RAC2 in hematopoietic cells that discriminates RAC2 from the related, ubiquitous RAC1

    P67-phox (NCF2) Lacking Exons 11 and 12 Is Functionally Active and Leads to an Extremely Late Diagnosis of Chronic Granulomatous Disease (CGD)

    Get PDF
    Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.1000+2T→G, that led to several splice products one of which lacked exons 11 and 12. This deletion was in frame and allowed for remarkable residual NADPH oxidase activity as determined by transduction experiments using a retroviral vector. We conclude that p67-phox which lacks the 34 amino acids encoded by the two exons can still exert considerable functional activity. This activity can partially explain the long-term survival of the patients without adequate diagnosis and treatment, but could not prevent progressing lung damage

    Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits

    Get PDF
    Adult neurogenesis in mammals is restricted to some brain regions, in contrast with other vertebrates in which the genesis of new neurons is more widespread in different areas of the nervous system. In the mammalian cerebellum, neurogenesis is thought to be limited to the early postnatal period, coinciding with end of the granule cell genesis and disappearance of the external granule cell layer (EGL). We recently showed that in the rabbit cerebellum the EGL is replaced by a proliferative layer called ‘subpial layer’ (SPL) which persists beyond puberty on the cerebellar surface. Here we investigated what happens in the cerebellar cortex of peripuberal rabbits by using endogenous and exogenously-administered cell proliferation antigens in association with a cohort of typical markers for neurogenesis. We show that cortical cell progenitors extensively continue to be generated herein. Surprisingly, this neurogenic process continues to a lesser extent in the adult, even in the absence of a proliferative SPL. We describe two populations of newly generated cells, involving neuronal cells and multipolar, glia-like cells. The genesis of neuronal precursors is restricted to the molecular layer, giving rise to cells immunoreactive for GABA, and for the transcription factor Pax2, a marker for GABAergic cerebellar interneuronal precursors of neuroepithelial origin that ascend through the white matter during early postnatal development. The multipolar cells are Map5+, contain Olig2 and Sox2 transcription factors, and are detectable in all cerebellar layers. Some dividing Sox2+ cells are Bergmann glia cells. All the cortical newly generated cells are independent from the SPL and from granule cell genesis, the latter ending before puberty. This study reveals that adult cerebellar neurogenesis can exist in some mammals. Since rabbits have a longer lifespan than rodents, the protracted neurogenesis within its cerebellar parenchyma could be a suitable model for studying adult nervous tissue permissiveness in mammals

    The extreme HBL behaviour of Markarian 501 during 2012

    Get PDF
    A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of ∌\sim0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was ∌\sim3 CU, and the peak of the high-energy spectral component was found to be at ∌\sim2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays
    • 

    corecore