35 research outputs found

    Heat and SO2 Emission Rates at Active Volcanoes - The Case Study of Masaya, Nicaragua

    Get PDF
    No abstract included in the book chapte

    THERMAL IMAGING OF ERTA 'ALE LAVA LAKE

    Get PDF
    The project ''Sviluppo di sistemi di monitoraggio'' (Dipartimento di Protezione Civile di Regione Sicilia, INGV Catania Section, Italy), the Leverhulme Trust, the BBC, and the Ethiopian Air Force

    UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano

    Get PDF
    Extreme environments like active volcanoes exhibit many difficulties in being studied by in situ techniques. For example, during eruptions, summit areas are very hard to be accessed because of logistics problems and/or volcanic hazards. The use of remote sensing techniques in the last 20 years by satellite or airborne platforms has proven their capabilities in mapping and monitoring the evolution of volcanic activity. This approach has become increasingly important, as much interest is actually focused on understanding precursory signals to volcanic eruptions. In this work we verify the use of cutting-edge technology like unmanned flying system thermally equipped for volcanic applications. We present the results of a flight test performed by INGV in collaboration with the University of Bologna (Aerospace Division) by using a multi-rotor aircraft in a hexacopter configuration. The experiment was realized in radio controlled mode to overcome many regulation problems which, especially in Italy, limit the use of this system in autonomous mode. The overall goal was not only qualitative but also quantitative oriented. The system flew above an Italian mud volcano, named Le Salinelle, located on the lower South West flank of Mt. Etna volcano, which was chosen as representative site, providing not only a discrimination between hot and cold areas, but also the corresponding temperature values. The in-flight measurements have been cross-validated with contemporaneous in-situ acquisition of thermal data and from independent measurements of mud/water temperature

    Thermal imaging of Erta 'Ale active lava lake (Ethiopia)

    Get PDF
    Active lava lakes represent the uppermost portion of a volume of convective magma exposed to the atmosphere, and provide open windows on magma dynamics within shallow reservoirs. Erta 'Ale volcano located within the Danakil Depression in Ethiopia, hosts one of the few permanent convecting lava lakes, active at least since the last century. We report here the main features of Erta 'Ale lake surface investigated using a handheld infrared thermal camera between 11 and 12 November 2006. In both days, the lake surface was mainly characterized by efficient magma circulation reflecting in the formation of well-marked incandescent cracks and wide crust plates. These crossed the lake from the upwelling to the downwelling margin with mean speeds ranging between 0.01 and 0.15 m s-1. Hot spots opened eventually in the middle of crust plates and/or along cracks. These produced explosive activity lasting commonly between ~10 and 200 s. Apparent temperatures at cracks ranged between ~700 and 1070ËšC, and between ~300 and 500ËšC at crust plates. Radiative power output of the lake varied between ~45 and 76 MW according to the superficial activity and continuous resurfacing of the lake. Time series analysis of the radiant power output data reveals cyclicity with a period of ~10 min. The combination of visual and thermal observations with apparent mean temperatures and convection rates allows us to interpret these signals as the periodic release of hot overpressured gas bubbles at the lake surface

    Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue

    Get PDF
    Aims/hypothesis: The association between increased (visceral) fat mass, insulin resistance and type 2 diabetes mellitus is well known. Yet, it is unclear whether the mere increase in intra-abdominal fat mass, or rather functional alterations in fat tissue in obesity contribute to the development of insulin resistance in obese patients. Here we attempted to isolate the metabolic effect of increased fat mass by fat tissue transplantation. Methods: Epididymal fat pads were removed from male C57Bl6/J mice and transplanted intraperitoneally into male littermates (recipients), increasing the combined perigonadal fat mass by 50% (p < 0.005). At 4 and 8weeks post-transplantation, glucose and insulin tolerance tests were performed, and insulin, NEFA and adipokines measured. Results: Circulating levels of NEFA, adiponectin and leptin were not significantly different between transplanted and sham-operated control mice, while results of the postprandial insulin tolerance test were similar between the two groups. In contrast, under fasting conditions, the mere increase in intra-abdominal fat mass resulted in decreased plasma glucose levels (6.9 ± 0.4 vs 8.1 ± 0.3mmol/l, p = 0.03) and a ∼20% lower AUC in the glucose tolerance test (p = 0.02) in transplanted mice. Homeostasis model assessment of insulin resistance (HOMA-IR) was 4.1 ± 0.4 in transplanted mice (vs 6.2 ± 0.7 in sham-operated controls) (p = 0.02), suggesting improved insulin sensitivity. Linear regression modelling revealed that while total body weight positively correlated, as expected, with HOMA-IR (β: 0.728, p = 0.006), higher transplanted fat mass correlated with lower HOMA-IR (β: −0.505, p = 0.031). Conclusions/interpretation: Increasing intra-abdominal fat mass by transplantation of fat from normal mice improved, rather than impaired, fasting glucose tolerance and insulin sensitivity, achieving an effect opposite to the expected metabolic consequence of increased visceral fat in obesit

    Degassing pathways through the shallow magmatic-hydrothermal system of Poás

    Get PDF
    We report results from a multidisciplinary campaign carried out at Poás crater-lake (Costa Rica) on 17-18 March 2009. Thermal imagery of fumaroles on the north side of the dome and the lake surface revealed mean apparent temperatures of 25-40°C (maximum of 80°C), and 30-35°C (maximum of 48°C), respectively. Mean radiative heat output of the lake, uncorrected for downwelling flux, was estimated as ~230 MW. The mean SO2 flux emitted by the crater measured by walking-traverses was 76 tonnes day-1, with approximately equal contributions from both the dome and the lake and fumarole plumes. Gas measurements by active open-path FTIR spectroscopy indicated molar ratios of H2O/SO2 = 151 and CO2/SO2 = 1.56. HCl and HF were not detected in measured spectra but based on the detection limits of these species, we calculate SO2/HCl > 40, and SO2/HF > 200. Particles were sampled from the plume by air filtration. The filters were analysed using ion chromatography, which revealed an abundance of K+ and SO42-, with smaller amounts of Ca2+, Mg2+ and Cl-. We discuss here the implications of the results for degassing pathways through the shallow magmatic-hydrothermal system

    The VEI 2 Christmas 2018 Etna Eruption: A Small But Intense Eruptive Event or the Starting Phase of a Larger One?

    Get PDF
    The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.Publishedid 9056V. Pericolosità vulcanica e contributi alla stima del rischioJCR Journa

    Data and service management of the European volcanological community by the Volcano Observations Thematic Core Service (EPOS-ERIC)

    Get PDF
    The Volcano Observations Thematic Core Service (VOLC-TCS) is one of the TCSs forming the EPOS European Research Infrastructure Consortium (EPOS-ERIC). The overarching objective of the VOLC-TCS is the implementation of the technical and legal framework consistent with EPOS infrastructure for both coordinating the European volcanology community and giving access to data and services relevant to the volcanoes located in the European countries and their overseas territories, provided by Volcano Observatories (VOs) and Research Institutions (VRIs). To ensure a long-term sustainable operational infrastructure it was necessary to define a clear financial, legal, political and governance framework, alongside the solution of technical issues. One of the main challenges of the management of volcanological data consists in their great heterogeneity, regarding technical characteristics, and also legal aspects (e.g., different data policies among the data providers, different purposes for the use of data from science to monitoring, early-warning, information, etc.). Another challenge derives from the consistency of the VO-TCS with the service provision of EPOS, which characteristic is to merge different Earth Science communities (seismology, GNSS, geomagnetic, geochemistry, geology, etc.). Indeed, some of the services used in volcanology are in common with other communities, thus the implementation work was also devoted to harmonize the provision of data and products standardized by other TCS with the provision of volcanological services. Another important task is the implementation of the community Gateway which is aimed at allowing services not fully compliant with EPOS or implemented by institutions outside the EPOS perimeter, to be visible in EPOS and creating the conditions to interface the VOLC-TCS with data infrastructures operating at global level (e.g., WOVOdat)

    Transnational Access to Research Facilities: an EPOS service to promote multi-domain Solid Earth Sciences in Europe

    Get PDF
    Transnational access (TNA) allows cross-border, short-term and frequently free-of-charge access to world-class research facilities, to foster collaborations and exchanges of experience. Specifically, TNA aims to encourage open science and innovation and to increase the efficient and effective use of scientific infrastructure. Within EPOS, the European Plate Observing System, the Volcano Observatories and Multi-scale Laboratories communities have offered TNA to their high-quality research facilities through national and European funding. This experience has allowed the definition, design, and testing of procedures and activities needed to provide transnational access inn the EPOS context. In this paper, the EPOS community describes the main objectives for the provision of transnational access in the EPOS framework, based on previous experiences. It includes practical procedures for managing transnational access from a legal, governance, and financial perspective, and proposes logistical and technical solutions to effectively execute transnational access activities. In addition, it provides an outlook on the inclusion of new thematic communities within the TNA framework, and addresses the challenges of providing market-driven access to industry.publishedVersio
    corecore