38 research outputs found
Phylogeography Unplugged: Comparative Surveys in the Genomic Era
In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional ( unplugged ) approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches
Phylogeography Unplugged: Comparative Surveys in the Genomic Era
In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo- Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional (“unplugged”) approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches
The Molecular Biogeography of the Indo-Pacific: Testing Hypotheses With Multispecies Genetic Patterns
Aim: To test hypothesized biogeographic partitions of the tropical Indo-Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test.
\u3eLocation: The Indo-Pacific Ocean.
Time Period: Pliocene through the Holocene.
Major Taxa Studied: Fifty-six marine species.
Methods: We tested eight biogeographic hypotheses for partitioning of the Indo-Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance-based redundancy analysis (dbRDA).
Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance.
Main Conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo-Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo-Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5
The molecular biogeography of the Indo‐Pacific: Testing hypotheses with multispecies genetic patterns
Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test.
Location: The Indo‐Pacific Ocean.
Time period: Pliocene through the Holocene.
Major taxa studied: Fifty‐six marine species.
Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐ Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance‐based redundancy analysis (dbRDA).
Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance.
Main conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5
Formation of the Isthmus of Panama
The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed manymillions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways,withformationof theIsthmus of Panama sensustricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.Facultad de Ciencias Naturales y Muse
Data from: Appearance of an early closure of the Isthmus of Panama is the product of biased inclusion of data in the metaanalysis
In their PNAS article “Biological evidence supports an early and complex emergence of the Isthmus of Panama,” Bacon et al. (1 - http://dx.doi.org/10.1073/pnas.1423853112) use data from molecular comparisons of terrestrial and marine organisms taken from the literature to estimate dates of rate shifts in migration. One of their conclusions is that “events separating marine organisms in the Atlantic and Pacific oceans [occurred] at ca. 23 and 7 Ma” (1). The authors base this conclusion on two kinds of molecular dating: (i) 31 dates from phylogenies with evolutionary rates calibrated from fossils at one or more nodes, and (ii) 52 dates from mitochondrial divergence between sister species on either side of the Isthmus taken from the review by Lessios (2) (note: complete data are available from the Dryad Digital Repository at http://dx.doi.org/10.5061/dryad.6m653). For the latter, divergence was converted to time by assuming a mitochondrial DNA divergence rate of 2% per million years. Unfortunately, Bacon et al.’s metaanalysis of separations of marine organisms contains unexplained omissions of data and mistakes
Complete transisthmian date values
The spreadsheet contains all data from publications cited in Bacon et al. 2015, showing data that were omitted, data that were corrected, and data that were correct, as well as summary statistics
armatus_Concat_AllHaplos
Alignment of concatenated partial DNA sequences of the mitochondrial genes COI and 16S rDN
Data from: Phylogeography of Petrolisthes armatus, an invasive species with low dispersal ability
Theoretically, species with high population structure are likely to expand their range, because marginal populations are free to adapt to local conditions; however, meta-analyses have found a negative relation between structure and invasiveness. The crab Petrolisthes armatus has a wide native range, which has expanded in the last three decades. We sequenced 1718 bp of mitochondrial DNA from native and recently established populations to determine the population structure of the former and the origin of the latter. There was phylogenetic separation between Atlantic and eastern Pacific populations, and between east and west Atlantic ones. Haplotypes on the coast of Florida and newly established populations in Georgia and South Carolina belong to a different clade from those from Yucatán to Brazil, though a few haplotypes are shared. In the Pacific, populations from Colombia and Ecuador are highly divergent from those from Panamá and the Sea of Cortez. In general, populations were separated hundreds to million years ago with little subsequent gene flow. High genetic diversity in the newly established populations shows that they were founded by many individuals. Range expansion appears to have been limited by low dispersal rather than lack of ability of marginal populations to adapt to extreme conditions