5,934 research outputs found

    Do Athermal Amorphous Solids Exist?

    Full text link
    We study the elastic theory of amorphous solids made of particles with finite range interactions in the thermodynamic limit. For the elastic theory to exist one requires all the elastic coefficients, linear and nonlinear, to attain a finite thermodynamic limit. We show that for such systems the existence of non-affine mechanical responses results in anomalous fluctuations of all the nonlinear coefficients of the elastic theory. While the shear modulus exists, the first nonlinear coefficient B_2 has anomalous fluctuations and the second nonlinear coefficient B_3 and all the higher order coefficients (which are non-zero by symmetry) diverge in the thermodynamic limit. These results put a question mark on the existence of elasticity (or solidity) of amorphous solids at finite strains, even at zero temperature. We discuss the physical meaning of these results and propose that in these systems elasticity can never be decoupled from plasticity: the nonlinear response must be very substantially plastic.Comment: 11 pages, 11 figure

    Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]

    Full text link
    The quantization of phase is still an open problem. In the approach of Susskind and Glogower so called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related with the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We consider also the inverse arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure

    Processing and Transmission of Information

    Get PDF
    Contains reports on six research projects.Purchase Order DDL-B15

    Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory conditioning in adult Drosophila

    Get PDF
    Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons

    Measurements of total odd nitrogen (NOy) aboard MOZAIC in-service aircraft: instrument design, operation and performance

    Get PDF
    A small system for the unattended measurement of total odd nitrogen (NOy, i.e., the sum of NO and its atmospheric oxidation products) aboard civil in-service aircraft in the framework of MOZAIC is described. The instrument employs the detection of NO by its chemiluminescence with O-3 in combination with catalytic conversion of the other NOy compounds to NO at 300degreesC on a gold surface in the presence of H-2. The instrument has a sensitivity of 0.4-0.7 cps/ppt and is designed for unattended operation during 1-2 service cycles of the aircraft (400-800 flight hours). The total weight is 50 kg, including calibration system, compressed gases, mounting, and safety measures. The layout and inlet configuration are governed by requirements due to the certification for passenger aircraft. Laboratory tests are described regarding the conversion efficiency for NO2 and HNO3 (both > 98%). Interference by non-NOy species is <1% for CH3CN and NH3, <5 x 10(-5) % for N2O (corresponding to <0.2 ppt fake NOy from ambient N2O) and 100% for HCN. The time response of the instrument is <1 s (90% change) for NO2. The response for HNO3 is nonlinear: 20 s for 67%, 60 s for 80%, and 150 s for 90% response, respectively

    Weak-localization corrections to the conductivity of double quantum wells

    Full text link
    The weak-localization contribution \delta\sigma(B) to the conductivity of a tunnel-coupled double-layer electron system is evaluated and its behavior in weak magnetic fields B perpendicular or parallel to the layers is examined. In a perpendicular field B, \delta \sigma(B) increases and remains dependent on tunneling as long as the magnetic field is smaller than \hbar/e D \tau_t, where D is the in-plane diffusion coefficient and \tau_t the interlayer tunneling time. If \tau_t is smaller than the inelastic scattering time, a parallel magnetic field also leads to a considerable increase of the concuctivity starting with a B**2 law and saturating at fields higher than \hbar/e Z (D \tau_t)**(1/2), where Z is the interlayer distance. In the limit of coherent tunneling, when \tau_t is comparable to elastic scattering time, \delta \sigma(B) differs from that of a single-layer system due to ensuing modifications of the diffusion coefficient. A possibility to probe the weak-localization effect in double-layer systems by the dependence of the conductivity on the gate-controlled level splitting is discussed.Comment: Text 18 pages in Latex/Revtex format, 4 Postscript figures. J. Phys.: CM,in pres

    Enhanced Support for High Intensity Users of the Criminal Justice System – an evaluation of mental health nurse input into Integrated Offender Management Services in the North East of England

    Get PDF
    The current UK Government’s focus on the development of services to manage and support offenders with mental health problems has resulted in a number of innovative project developments. This research examines a service development in the North East of England which co-located Mental Health nurses with two Integrated Offender Management teams. While not solving all problems, the benefits of co-location were clear – although such innovations are now at risk from government changes which will make Integrated Offender Management the responsibility of new providers without compelling them to co-operate with health services

    Quantum Phase and Quantum Phase Operators: Some Physics and Some History

    Get PDF
    After reviewing the role of phase in quantum mechanics, I discuss, with the aid of a number of unpublished documents, the development of quantum phase operators in the 1960's. Interwoven in the discussion are the critical physics questions of the field: Are there (unique) quantum phase operators and are there quantum systems which can determine their nature? I conclude with a critique of recent proposals which have shed new light on the problem.Comment: 19 pages, 2 Figs. taken from published articles, LaTeX, to be published in Physica Scripta, Los Alamos preprint LA-UR-92-352

    Conductance Fluctuations in a Disordered Double-Barrier Junction

    Full text link
    We consider the effect of disorder on coherent tunneling through two barriers in series, in the regime of overlapping transmission resonances. We present analytical calculations (using random-matrix theory) and numerical simulations (on a lattice) to show that strong mode-mixing in the inter-barrier region induces mesoscopic fluctuations in the conductance GG of universal magnitude e2/he^2/h for a symmetric junction. For an asymmetric junction, the root-mean-square fluctuations depend on the ratio ν\nu of the two tunnel resistances according to rmsG=(4e2/h)β1/2ν(1+ν)2{rms} G = (4e^2/h)\beta^{-1/2} \nu(1+\nu)^{-2}, where β=1(2)\beta = 1 (2) in the presence (absence) of time-reversal symmetry.Comment: 12 pages, REVTeX-3.0, 2 figures, submitted to Physical Review
    corecore