9 research outputs found

    Inactivation of TIF1γ Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas

    Get PDF
    Inactivation of the Transforming Growth Factor Beta (TGFβ) tumor suppressor pathway contributes to the progression of Pancreatic Ductal AdenoCarcinoma (PDAC) since it is inactivated in virtually all cases of this malignancy. Genetic lesions inactivating this pathway contribute to pancreatic tumor progression in mouse models. Transcriptional Intermediary Factor 1 gamma (TIF1γ) has recently been proposed to be involved in TGFβ signaling, functioning as either a positive or negative regulator of the pathway. Here, we addressed the role of TIF1γ in pancreatic carcinogenesis. Using conditional Tif1γ knockout mice (Tif1γlox/lox), we selectively abrogated Tif1γ expression in the pancreas of Pdx1-Cre;Tif1γlox/lox mice. We also generated Pdx1-Cre;LSL-KrasG12D;Tif1γlox/lox mice to address the effect of Tif1γ loss-of-function in precancerous lesions induced by oncogenic KrasG12D. Finally, we analyzed TIF1γ expression in human pancreatic tumors. In our mouse model, we showed that Tif1γ was dispensable for normal pancreatic development but cooperated with Kras activation to induce pancreatic tumors reminiscent of human Intraductal Papillary Mucinous Neoplasms (IPMNs). Interestingly, these cystic lesions resemble those observed in Pdx1-Cre;LSL-KrasG12D;Smad4lox/lox mice described by others. However, distinctive characteristics, such as the systematic presence of endocrine pseudo-islets within the papillary projections, suggest that SMAD4 and TIF1γ don't have strictly redundant functions. Finally, we report that TIF1γ expression is markedly down-regulated in human pancreatic tumors by quantitative RT–PCR and immunohistochemistry supporting the relevance of these findings to human malignancy. This study suggests that TIF1γ is critical for tumor suppression in the pancreas, brings new insight into the genetics of pancreatic cancer, and constitutes a promising model to decipher the respective roles of SMAD4 and TIF1γ in the multifaceted functions of TGFβ in carcinogenesis and development

    Antitumor Effect of Everolimus in Preclinical Models of High Grade Gastroenteropancreatic Neuroendocrine Carcinomas.

    No full text
    International audienceBackground/Aims: While the range of therapeutic options for well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP NETs) has recently increased with the emergence of targeted therapies, such as mTOR inhibitors, there is no recent progress in the treatment of poorly differentiated neuroendocrine carcinomas (PDNECs). Since PDNECs have been shown to strongly express mTOR pathway components, the aim of the present study was to assess the antitumor effect of the mTOR inhibitor everolimus in preclinical models of PDNECs. Methods: Thee expression of mTOR pathway components and their response to everolimus were assessed in two neuroendocrine cell lines: STC-1 and GluTag. A xenograft model of intra-hepatic dissemination in the nude mouse, based on the intrasplenic injection of either STC-1 and GluTag tumor cells, was used. Animals were started on everolimus treatment 3 days after injection. The effects of treatment on tumor growth, proliferative capacities, apoptosis and in situ expression of mTOR pathway components were assessed. Results: The expression of mTOR pathway components was comparable in STC-1 and GluTag cells and in human PDNECs and could be inhibited in vitro by everolimus. In vivo, the tumor volume of STC-1 and GluTag xenografts was significantly reduced in treated animals (6.05% ± 1.84 as compared to 21.76 ± 3.88% in controls). Everolimus treatment also induced a significant decrease in Ki67 index and in the phosphorylation levels of the two major effectors of mTOR, p70S6K and 4E-BP1. Conclusion: Our experimental data suggest that mTOR inhibition could be considered a therapeutic option for high grade GEP NETs

    Mechanisms of local invasion in enteroendocrine tumors: Identification of novel candidate cytoskeleton-associated proteins in an experimental mouse model by a proteomic approach and validation in human tumors

    No full text
    Small-intestinal neuroendocrine tumors (SI-NETs) are defined as locally invasive only after extension to the muscularis propria. To gain further insight into the molecular mechanisms, we applied a proteomic approach to an orthotopic xenograft model to identify candidate proteins evaluable in human SI-NETs. After grafting STC-1 neuroendocrine tumor cells on the caecum of nude mice, comparative proteomic studies were performed between the pre-invasive and the invasive stages, respectively 2 and 8 weeks after grafting. We identified 24 proteins displaying at least a 1.5-fold differential expression between 2 and 8 week-stages. Most were cytoskeleton-associated proteins, among which five showed decreasing expression levels (CRMP2, TCP1ε, TPM2, vimentin, desmin) and two increasing expression levels (14-3-3γ, CK8). Changes for CRMP2, TCP1ε, TPM2 and 14-3-3γ were confirmed in experimental tumors and in a series of 28 human SI-NETs. In conclusion, our results underline the relevance of proteomics to identify novel biomarkers of tissue invasion

    Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    No full text
    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a(+) and neurogenin 3-expressing (Ngn3(+)) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors

    Dependence receptor TrkC is a putative colon cancer tumor suppressor

    No full text
    The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor

    Dependence receptor TrkC is a putative colon cancer tumor suppressor

    No full text
    The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor

    Targeting the PI3K/mTOR Pathway in Murine Endocrine Cell Lines: In Vitro and in Vivo Effects on Tumor Cell Growth

    No full text
    The mammalian target of rapamycin (mTOR) inhibitors, such as rapalogues, are a promising new tool for the treatment of metastatic gastroenteropancreatic endocrine tumors. However, their mechanisms of action remain to be established. We used two murine intestinal endocrine tumoral cell lines, STC-1 and GLUTag, to evaluate the antitumor effects of rapamycin in vitro and in vivo in a preclinical model of liver endocrine metastases. In vitro, rapamycin inhibited the proliferation of cells in the basal state and after stimulation by insulin-like growth factor-1. Simultaneously, p70S6 kinase and 4EBP1 phosphorylation was inhibited. In vivo, rapamycin substantially inhibited the intrahepatic growth of STC-1 cells, irrespectively of the timing of its administration and even when the treatment was administered after cell intrahepatic engraftment. In addition, treated animals had significantly prolonged survival (mean survival time: 47.7 days in treated animals versus 31.8 days in controls) and better clinical status. Rapamycin treatment was associated with a significant decrease in mitotic index and in intratumoral vascular density within STC-1 tumors. Furthermore, the antitumoral effect obtained after treatment with a combination of rapamycin and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 was more significant than with rapamycin alone in both cell lines. Our results suggest that the antitumor efficacy of rapamycin in neuroendocrine tumors results from a combination of antiproliferative and antiangiogenic effects. Interestingly, a more potent antitumor efficiency could be obtained by simultaneously targeting several levels of the PI3K/mTOR pathway
    corecore