4 research outputs found

    Impact of Device Topology on the Performance of High-Speed 1550 nm Wafer-Fused VCSELs

    No full text
    A detailed experimental analysis of the impact of device topology on the performance of 1550 nm VCSELs with an active region based on thin InGaAs/InAlGaAs quantum wells and a composite InAlGaAs buried tunnel junction is presented. The high-speed performance of the lasers with L-type device topology (with the largest double-mesa sizes) is mainly limited by electrical parasitics showing noticeable damping of the relaxation oscillations. For the S-type device topology (with the smallest double-mesa sizes), the decrease in the parasitic capacitance of the reverse-biased p+n-junction region outside the buried tunnel junction region allowed to raise the parasitic cutoff frequency up to 13–14 GHz. The key mechanism limiting the high-speed performance of such devices is thus the damping of the relaxation oscillations. VCSELs with S-type device topology demonstrate more than 13 GHz modulation bandwidth and up to 37 Gbps nonreturn-to-zero data transmission under back-to-back conditions at 20 °C

    High-Power Quantum Cascade Lasers Emitting at 8 μm: Technology and Analysis

    No full text
    In this work, we demonstrate the features of a two-stage epitaxial growth technique and show the results of power and efficiency measurements for three different designs of quantum cascade lasers with a record-high peak power in the 8 μm spectral region. The time-resolved QCL spectral study proves that InP-based upper cladding paired with an InP contact layer provides better heat dissipation and allows one to reach better power characteristics in comparison with InGaAs-based contact, even with short pulse pumping
    corecore