2,940 research outputs found
Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''
The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be
published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5
efficiency bound for loss compensation in optical homodyne tomography. In our
reply we demonstrate that neither does such a rigorous bound exist nor is the
bound required for ruling out the state reconstruction of an individual system
[G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review
Quantum levitation by left-handed metamaterials
Left-handed metamaterials make perfect lenses that image classical
electromagnetic fields with significantly higher resolution than the
diffraction limit. Here we consider the quantum physics of such devices. We
show that the Casimir force of two conducting plates may turn from attraction
to repulsion if a perfect lens is sandwiched between them. For optical
left-handed metamaterials this repulsive force of the quantum vacuum may
levitate ultra-thin mirrors
Collimating lenses from non-Euclidean transformation optics
Based on the non-Euclidean transformation optics, we design a thin
metamaterial lens that can achieve wide-beam radiation by embedding a simple
source (a point source in three-dimensional case or a line current source in
two-dimensional case). The scheme is performed on a layer-by-layer geometry to
convert curved surfaces in virtual space to flat sheets, which pile up and form
the entire lens in physical space. Compared to previous designs, the lens has
no extreme material parameters. Simulation results confirm its functionality.Comment: 12 pages, 6 figure
The sonic analogue of black hole radiation
A microscopic description of Hawking radiation in sonic black holes has been
recently presented (Giovanazzi S 2005 Phys. Rev. Lett. 94 061302). This exactly
solvable model is formulated in terms of one-dimensional scattering of a Fermi
gas. In this paper, the model is extended to account possible finite size
effects of a realistic geometry. The flow of particles is maintained by a
piston (i.e. an impenetrable barrier) moving slowly towards the sonic horizon.
Using existing technologies the Hawking temperature can be of order of a few
microkelvin in a realistic experiment.Comment: 14 pages, 7 figures, submitted to Journal of Physics B: Atomic,
Molecular & Optical Physic
Multi-mode density matrices of light via amplitude and phase control
A new method is described for determining the quantum state of correlated
multimode radiation by interfering the modes and measuring the statistics of
the superimposed fields in four-port balanced homodyne detection. The full
information on the -mode quantum state is obtained by controlling both the
relative amplitudes and the phases of the modes, which simplifies the
reconstruction of density matrices to only Fourier transforms. In
particular, this method yields time-correlated multimode density matrices of
optical pulses by superimposing the signal by a sequence of short
local-oscillator pulses.Comment: 6 pages, late
Ultrahigh sensitivity of slow-light gyroscope
Slow light generated by Electromagnetically Induced Transparency is extremely
susceptible with respect to Doppler detuning. Consequently, slow-light
gyroscopes should have ultrahigh sensitivity
Moments of nonclassicality quasiprobabilities
A method is introduced for the verification of nonclassicality in terms of
moments of nonclassicality quasiprobability distributions. The latter are
easily obtained from experimental data and will be denoted as nonclassicality
moments. Their relation to normally-ordered moments is derived, which enables
us to verify nonclassicality by using well established criteria. Alternatively,
nonclassicality criteria are directly formulated in terms of nonclassicality
moments. The latter converge in proper limits to the usually used criteria, as
is illustrated for squeezing and sub-Poissonian photon statistics. Our theory
also yields expectation values of any observable in terms of nonclassicality
moments.Comment: 6 pages, 3 figure
On the AdS Higher Spin / O(N) Vector Model Correspondence: degeneracy of the holographic image
We explore the conjectured duality between the critical O(N) vector model and
minimal bosonic massless higher spin (HS) theory in AdS. In the boundary free
theory, the conformal partial wave expansion (CPWE) of the four-point function
of the scalar singlet bilinear is reorganized to make it explicitly
crossing-symmetric and closed in the singlet sector, dual to the bulk HS gauge
fields. We are able to analytically establish the factorized form of the fusion
coefficients as well as the two-point function coefficient of the HS currents.
We insist in directly computing the free correlators from bulk graphs with the
unconventional branch. The three-point function of the scalar bilinear turns
out to be an "extremal" one at d=3. The four-leg bulk exchange graph can be
precisely related to the CPWs of the boundary dual scalar and its shadow. The
flow in the IR by Legendre transforming at leading 1/N, following the pattern
of double-trace deformations, and the assumption of degeneracy of the hologram
lead to the CPWE of the scalar four-point function at IR. Here we confirm some
previous results, obtained from more involved computations of skeleton graphs,
as well as extend some of them from d=3 to generic dimension 2<d<4.Comment: 22 pages, 5 figure
Characterization of nonlinear switching in a figure-of-eight fiber laser using frequency-resolved optical gating
The measurement technique of frequency-resolved optical gating is applied to determine the nonlinear switching characteristics of a passively modelocked figure-of-eight erbium-doped fiber laser. By completely characterizing the intensity and phase of the laser output pulses, the intracavity fields in the nonlinear amplifying loop mirror of the laser cavity are determined by numerical propagation using the nonlinear Schrodinger equation. Excellent switching of 95% can be achieved as a result of uniform phase characteristics developed by pulses propagating in the nonlinear amplifying loop mirror
Experimental characterization of Gaussian quantum communication channels
We present a full experimental characterization of continuous variable
quantum communication channels established by shared entanglement together with
local operations and classical communication. The resulting teleportation
channel was fully characterized by measuring all elements of the covariance
matrix of the shared two-mode squeezed Gaussian state. From the experimental
data we determined the lower bound to the quantum channel capacity, the
teleportation fidelity of coherent states and the logarithmic negativity and
the purity of the shared state. Additionally, a positive secret key rate was
obtained for two of the established channels.Comment: 9 pages, 4 figures, submitted to Physical Review
- âŠ