276 research outputs found

    Rastreabilidade em cadeias agroindustriais: conceitos e aplicações.

    Get PDF
    bitstream/CNPDIA-2009-09/11845/1/CiT33_2006.pd

    Geopolymers: A new and smart way for a sustainable development

    Get PDF
    “Geopolymers” is a general term that describes a wide variety of inorganic and composite materials with limited restrictions on alumina and silica content. In the last decades, they have been also defined as “low-temperature aluminosilicate glasses”, “hydroceramics”, “inorganic polymer concrete” or “alkali bonded ceramics”. Recently, an updated definition has been proposed by the RILEM Technical Committee 224-AAM: “geopolymer materials are essential aluminosilicates activated with alkaline solution, excluding any other alkali-activated materials that should be classified apart” [1]

    Anchoring effect in visual information processing during financial decisions: an eye-tracking study

    Get PDF
    When reading a financial disclosure document, subjects are faced with multiple information cues and might simplify decisional complexity by relying on heuristics. This study explores whether, in an attempt to filter information from the Payment Account Fees Information Document (FID), subjects anchor their evaluation to a specific item, leading to biased financial choices. By detecting the visual search strategy in 70 subjects through eye tracking, we observed that people exhibited systematic visual anchoring to the top of the document, which corresponds to the Liquidity section that displays the Annual Fee. Moreover, data revealed that subjects sometimes fail to recognize the most advantageous products. This mainly occurs when the Annual Fee is high, even if the other charges compensate for that amount, clarifying the link between visual search strategy and financial decisions. Data also showed the role of financial literacy in modulating attention, as poorly financially literate subjects are more prone to anchoring bias. The findings contribute to the neuroeconomics literature on anchoring effect and highlight practical implications for financial regulators and managers involved in the ergonomics of documents

    The origin of the E+ transition in GaAsN alloys

    Full text link
    Optical properties of GaAsN system with nitrogen concentrations in the range of 0.9-3.7% are studied by full-potential LAPW method in a supercell approach. The E+ transition is identified by calculating the imaginary part of the dielectric function. The evolution of the energy of this transition with nitrogen concentration is studied and the origin of this transition is identified by analyzing the contributions to the dielectric function from different band combinations. The L_1c-derived states are shown to play an important role in the formation of the E+ transition, which was also suggested by recent experiments. At the same time the nitrogen-induced modification of the first conduction band of the host compound are also found to contribute significantly to the E+ transition. Further, the study of several model supercells demonstrated the significant influence of the nitrogen potential on the optical properties of the GaAsN system.Comment: 5 pages, 3 figure

    Reverse osmosis reject water management by immobilization into alkali-activated materials

    Get PDF
    Water-intensive industries face challenges due to water scarcity and pollution. In the management of these challenges, membrane processes play an important role. However, they produce significant amounts of reject waters, in which the separated salts and pollutants are concentrated. This study aims to develop a novel management concept for reject waters using alkali activation to immobilize salts in a solid phase using metakaolin, blast furnace slag (BFS), or their mixture as precursors and to create alkali-activated materials with sufficient properties to be potentially used in construction applications. Seven different waters were used to prepare the NaOH-based alkali activator solution: deionized water, three simulated seawaters with increasing salinity, and three reverse osmosis (RO) reject waters from mining or pulp and paper industries. Overall, BFS-based samples had the highest immobilization efficiency, likely due to the formation of layered double hydroxide phases (hydrotalcite, with anion exchange capacity) and hydrocalumite (chloride-containing mineral). Moreover, high-salinity water enhanced the dissolution of precursors, prolonged the setting time, and increased the compressive strength compared with nonsaline water. Thus, the obtained materials could be used in construction applications, such as backfilling material at mines where RO concentrates are commonly produced

    Microwave-assisted vacuum synthesis of tio2 nanocrystalline powders in one-pot, one-step procedure

    Get PDF
    A new method for fast and simple synthesis of crystalline TiO2 nanoparticles with photocat-alytic activity was developed by carrying out a classic sol–gel reaction directly under vacuum. The use of microwaves for fast heating of the reaction medium further reduces synthesis times. When the solvent is completely removed by vacuum, the product is obtained in the form of a powder that can be easily redispersed in water to yield a stable nanoparticle suspension, exhibiting a comparable photocatalytic activity with respect to a commercial product. The present methodology can, therefore, be considered a process intensification procedure for the production of nanotitania

    Forecasting in the light of Big Data

    Get PDF
    Predicting the future state of a system has always been a natural motivation for science and practical applications. Such a topic, beyond its obvious technical and societal relevance, is also interesting from a conceptual point of view. This owes to the fact that forecasting lends itself to two equally radical, yet opposite methodologies. A reductionist one, based on the first principles, and the naive inductivist one, based only on data. This latter view has recently gained some attention in response to the availability of unprecedented amounts of data and increasingly sophisticated algorithmic analytic techniques. The purpose of this note is to assess critically the role of big data in reshaping the key aspects of forecasting and in particular the claim that bigger data leads to better predictions. Drawing on the representative example of weather forecasts we argue that this is not generally the case. We conclude by suggesting that a clever and context-dependent compromise between modelling and quantitative analysis stands out as the best forecasting strategy, as anticipated nearly a century ago by Richardson and von Neumann
    • …
    corecore