22 research outputs found
Time to reconcile research findings and clinical practice on upper limb neurorehabilitation
The problemIn the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs. Proposed solutionsThe objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature review of selected neurorehabilitation approaches, for each intervention the following elements were highlighted: definition of active ingredients; identification of underlying motor learning principles and neural mechanisms of recovery; inferences from research findings; and recommendations for clinical practice. Furthermore, we included a dedicated chapter on the importance of a comprehensive assessment (objective impairments and patient's perspective) to design personalized and effective neurorehabilitation interventions. ConclusionsIt's time to reconcile research findings with clinical practice. Evidence from literature is consistently showing that neurological patients improve upper limb function, when core strategies based on motor learning principles are applied. To this end, practical take-home messages in the concluding section are provided, focusing on the importance of graded task practice, high number of repetitions, interventions tailored to patient's goals and expectations, solutions to increase and distribute therapy beyond the formal patient-therapist session, and how to integrate different interventions to maximize upper limb motor outcomes. We hope that this manuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery
Time to reconcile research findings and clinical practice on upper limb neurorehabilitation
The problemIn the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs.Proposed solutionsThe objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature review of selected neurorehabilitation approaches, for each intervention the following elements were highlighted: definition of active ingredients; identification of underlying motor learning principles and neural mechanisms of recovery; inferences from research findings; and recommendations for clinical practice. Furthermore, we included a dedicated chapter on the importance of a comprehensive assessment (objective impairments and patient's perspective) to design personalized and effective neurorehabilitation interventions.ConclusionsIt's time to reconcile research findings with clinical practice. Evidence from literature is consistently showing that neurological patients improve upper limb function, when core strategies based on motor learning principles are applied. To this end, practical take-home messages in the concluding section are provided, focusing on the importance of graded task practice, high number of repetitions, interventions tailored to patient's goals and expectations, solutions to increase and distribute therapy beyond the formal patient-therapist session, and how to integrate different interventions to maximize upper limb motor outcomes. We hope that this manuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery
Time to reconcile research findings and clinical practice on upper limb neurorehabilitation
In the field of upper limb neurorehabilitation, the translation from research findings to clinical practice remains troublesome. Patients are not receiving treatments based on the best available evidence. There are certainly multiple reasons to account for this issue, including the power of habit over innovation, subjective beliefs over objective results. We need to take a step forward, by looking at most important results from randomized controlled trials, and then identify key active ingredients that determined the success of interventions. On the other hand, we need to recognize those specific categories of patients having the greatest benefit from each intervention, and why. The aim is to reach the ability to design a neurorehabilitation program based on motor learning principles with established clinical efficacy and tailored for specific patient's needs. The objective of the present manuscript is to facilitate the translation of research findings to clinical practice. Starting from a literature review of selected neurorehabilitation approaches, for each intervention the following elements were highlighted: definition of active ingredients; identification of underlying motor learning principles and neural mechanisms of recovery; inferences from research findings; and recommendations for clinical practice. Furthermore, we included a dedicated chapter on the importance of a comprehensive assessment (objective impairments and patient's perspective) to design personalized and effective neurorehabilitation interventions. It's time to reconcile research findings with clinical practice. Evidence from literature is consistently showing that neurological patients improve upper limb function, when core strategies based on motor learning principles are applied. To this end, practical take-home messages in the concluding section are provided, focusing on the importance of graded task practice, high number of repetitions, interventions tailored to patient's goals and expectations, solutions to increase and distribute therapy beyond the formal patient-therapist session, and how to integrate different interventions to maximize upper limb motor outcomes. We hope that this manuscript will serve as starting point to fill the gap between theory and practice in upper limb neurorehabilitation, and as a practical tool to leverage the positive impact of clinicians on patients' recovery
Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography: Evoked Potentials, Spectra and Source Localization
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76â0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81â0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting
Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography : Evoked Potentials, Spectra and Source Localization
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76-0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81-0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting
Reliability of upper limb pin-prick stimulation with electroencephalography : evoked potentials, spectra and source localization
In order for electroencephalography (EEG) with sensory stimuli measures to be used
in research and neurological clinical practice, demonstration of reliability is needed.
However, this is rarely examined. Here we studied the test-retest reliability of the EEG
latency and amplitude of evoked potentials and spectra as well as identifying the sources
during pin-prick stimulation.We recorded EEG in 23 healthy older adults who underwent
a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was
recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz,
and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials
was determined and test-retest reliability was assessed. Substantial reliability ICC scores
(0.76â0.79) were identified for evoked potential negative-positive amplitude from the left
hand at C4 channel and positive peak latency when stimulating the right hand at Cz
channel. Frequency spectra showed consistent increase of low-frequency band activity
(< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores
were found for activity at both low-frequency and theta bands (ICC scores: 0.81â0.98).
Sources were identified in the primary somatosensory and motor cortices in relation to
the positive peak using s-LORETA analysis. Measuring the frequency response from the
pin-prick evoked potentials may allow the reliable assessment of central somatosensory
impairment in the clinical setting.peer-reviewe
Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: a single-cohort feasibility trial protocol
IntroductionNeurosurgery for brain tumors needs to find a complex balance between the effective removal of targeted tissue and the preservation of surrounding brain areas. Neuromodulation-induced cortical prehabilitation (NICP) is a promising strategy that combines temporary inhibition of critical areas (virtual lesion) with intensive behavioral training to foster the activation of alternative brain resources. By progressively reducing the functional relevance of targeted areas, the goal is to facilitate resection with reduced risks of neurological sequelae. However, it is still unclear which modality (invasive vs. non-invasive neuromodulation) and volume of therapy (behavioral training) may be optimal in terms of feasibility and efficacy.Methods and analysisPatients undertake between 10 and 20 daily sessions consisting of neuromodulation coupled with intensive task training, individualized based on the target site and neurological functions at risk of being compromised. The primary outcome of the proposed pilot, single-cohort trial is to investigate the feasibility and potential effectiveness of a non-invasive NICP protocol on neuroplasticity and post-surgical outcomes. Secondary outcomes investigating longitudinal changes (neuroimaging, neurophysiology, and clinical) are measured pre-NICP, post-NICP, and post-surgery.Ethics and disseminationEthics approval was obtained from the Research Ethical Committee of FundaciĂł UniĂł Catalana d'Hospitals (approval number: CEI 21/65, version 1, 13/07/2021). The results of the study will be submitted to a peer-reviewed journal and presented at scientific congresses.Clinical trial registrationClinicalTrials.gov, identifier NCT05844605
Non-invasive prehabilitation to foster widespread fMRI cortical reorganization before brain tumor surgery: lessons from a case series
PurposeThe objective of this prospective, single-centre case series was to investigate feasibility, clinical outcomes, and neural correlates of non-invasive Neuromodulation-Induced Cortical Prehabilitation (NICP) before brain tumor surgery. Previous studies have shown that gross total resection is paramount to increase life expectancy but is counterbalanced by the need of preserving critical functional areas. NICP aims at expanding functional margins for extensive tumor resection without functional sequelae. Invasive NICP (intracranial neuromodulation) was effective but characterized by elevated costs and high rate of adverse events. Non-invasive NICP (transcranial neuromodulation) may represent a more feasible alternative. Nonetheless, up to this point, non-invasive NICP has been examined in only two case reports, yielding inconclusive findings.MethodsTreatment sessions consisted of non-invasive neuromodulation, to transiently deactivate critical areas adjacent to the lesion, coupled with intensive functional training, to activate alternative nodes within the same functional network. Patients were evaluated pre-NICP, post-NICP, and at follow-up post-surgery.ResultsTen patients performed the intervention. Feasibility criteria were met (retention, adherence, safety, and patient's satisfaction). Clinical outcomes showed overall stability and improvements in motor and executive function from pre- to post-NICP, and at follow-up. Relevant plasticity changes (increase in the distance between tumor and critical area) were observed when the neuromodulation target was guided by functional neuroimaging data.ConclusionThis is the first case series demonstrating feasibility of non-invasive NICP. Neural correlates indicate that neuroimaging-guided target selection may represent a valid strategy to leverage neuroplastic changes before neurosurgery. Further investigations are needed to confirm such preliminary findings
Patientâs assessment and prediction of recovery after stroke: a roadmap for clinicians
Abstract Background and purpose In neurorehabilitation clinical practice, assessment is usually more oriented to evaluate patientâs present status, than to plan interventions according to predicted outcomes. Therefore, we conducted an extensive review of current prognostic models available in the literature for recovery prediction of many functions and constructs, after stroke. We reported results in the form of a practical guide for clinicians, with the aim of promoting the culture of early clinical assessment for patient stratification, according to expected outcome. Summary of key points To define a roadmap for clinicians, a stepwise sequence of five actions has been developed, from collecting information of past medical history to the adoption of validated prediction tools. Furthermore, a clinically-oriented organization of available prediction tools for recovery after stroke have been proposed for motor, language, physiological and independency functions. Finally, biomarkers and online resources with prognostic value have been reviewed, to give the most updated state of the art on prediction tools after stroke. Recommendations for clinical practice Clinical assessment should be directed both towards the objective evaluation of the present health status, and to the prediction of expected recovery. The use of specific outcome measures with predictive value is recommended to help clinicians with the definition of sound therapeutic goals