881 research outputs found

    Highly turbulent solutions of LANS-alpha and their LES potential

    Get PDF
    We compute solutions of the Lagrangian-Averaged Navier-Stokes alpha-model (LANS) for significantly higher Reynolds numbers (up to Re 8300) than have previously been accomplished. This allows sufficient separation of scales to observe a Navier-Stokes (NS) inertial range followed by a 2nd LANS inertial range. The analysis of the third-order structure function scaling supports the predicted l^3 scaling; it corresponds to a k^(-1) scaling of the energy spectrum. The energy spectrum itself shows a different scaling which goes as k^1. This latter spectrum is consistent with the absence of stretching in the sub-filter scales due to the Taylor frozen-in hypothesis employed as a closure in the derivation of LANS. These two scalings are conjectured to coexist in different spatial portions of the flow. The l^3 (E(k) k^(-1)) scaling is subdominant to k^1 in the energy spectrum, but the l^3 scaling is responsible for the direct energy cascade, as no cascade can result from motions with no internal degrees of freedom. We verify the prediction for the size of the LANS attractor resulting from this scaling. From this, we give a methodology either for arriving at grid-independent solutions for LANS, or for obtaining a formulation of a LES optimal in the context of the alpha models. The fully converged grid-independent LANS may not be the best approximation to a direct numerical simulation of the NS equations since the minimum error is a balance between truncation errors and the approximation error due to using LANS instead of the primitive equations. Furthermore, the small-scale behavior of LANS contributes to a reduction of flux at constant energy, leading to a shallower energy spectrum for large alpha. These small-scale features, do not preclude LANS to reproduce correctly the intermittency properties of high Re flow.Comment: 37 pages, 17 figure

    Three regularization models of the Navier-Stokes equations

    Get PDF
    We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as SGS models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, LANS-alpha and Leray-alpha (at Re ~ 3300, Taylor Re ~ 790) and to a DNS. We derive the Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark as well as its associated k^(-1) energy spectrum. At sub-filter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady-state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark reproduces the energy spectrum and intermittency properties of the DNS. For the Leray model, increasing the filter width decreases the nonlinearity and the effective Re is substantially decreased. Even for the smallest value of alpha studied, Leray-alpha was inadequate as a SGS model. The LANS energy spectrum k^1, consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in resolution. However, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar Karman-Howarth equation). Clark is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha.Comment: 21 pages, 8 figure

    Cognitive Information Processing

    Get PDF
    Contains reports on four research projects.National Science Foundation (Grant SED76-81985)Associated Press (Grant)Providence Gravure, Inc. (Grant)Taylor Publishing Company (Grant

    Cognitive Information Processing

    Get PDF
    Contains reports on four research projects.Associated Press (Grant)Providence Gravure, Inc. (Grant)Taylor Publishing Company (Grant

    Novel insights by 4D Flow imaging on aortic flow physiology after valve-sparing root replacement with or without neosinuses

    Get PDF
    This study was undertaken to evaluate the flow dynamics in the aortic root after valve-sparing root replacement with and without neosinuses of Valsalva reconstruction, by exploiting the capability of 4D Flow imaging to measure in vivo blood velocity fields and 3D geometric flow patterns

    Cognitive Information Processing

    Get PDF
    Contains reports on five research projects.National Science Foundation (Grant SED76-81985)Associated Press (Grant)Providence Gravure, Inc. (Grant)Taylor Publishing Company (Grant)Sony Corporation (Grant

    Cognitive Information Processing

    Get PDF
    Contains reports on seven research projects.National Science Foundation (Grant SED76-81985)Graphic Arts Research Foundation (Grant)Providence Gravure, Inc. (Grant)Associated Press (Grant)National Institutes of Health (Grant 1 RO1 GM22547-01)National Institutes of Health (Grant 1 PO1 AG00354-01)Health Sciences Fund (Grant 76-11

    Outcomes of MYC-associated lymphomas after R-CHOP with and without consolidative autologous stem cell transplant: subset analysis of randomized trial intergroup SWOG S9704

    Get PDF
    Double hit lymphoma (DHL) and double protein-expressing (MYC and BCL2) lymphomas (DPL) fare poorly with R-CHOP; consolidative autologous stem cell transplant (ASCT) may improve outcomes. S9704, a phase III randomized study of CHOP +/−R with or without ASCT allows evaluation of intensive consolidation. Immunohistochemical analysis identified 27 of 198 patients (13.6%) with MYC IHC overexpression and 20 (74%) harboring concurrent BCL2 overexpression. Four had DHL and 16 had DPL only. With median follow-up 127 months, there is a trend favoring outcomes after consolidative ASCT in DPL and MYC protein overexpressing patients, whereas all DHL patients have died irrespective of ASCT

    Tissue registration and exploration user interfaces in support of a human reference atlas

    Get PDF
    Seventeen international consortia are collaborating on a human reference atlas (HRA), a comprehensive, high-resolution, three-dimensional atlas of all the cells in the healthy human body. Laboratories around the world are collecting tissue specimens from donors varying in sex, age, ethnicity, and body mass index. However, harmonizing tissue data across 25 organs and more than 15 bulk and spatial single-cell assay types poses challenges. Here, we present software tools and user interfaces developed to spatially and semantically annotate ( register ) and explore the tissue data and the evolving HRA. A key part of these tools is a common coordinate framework, providing standard terminologies and data structures for describing specimen, biological structure, and spatial data linked to existing ontologies. As of April 22, 2022, the registration user interface has been used to harmonize and publish data on 5,909 tissue blocks collected by the Human Biomolecular Atlas Program (HuBMAP), the Stimulating Peripheral Activity to Relieve Conditions program (SPARC), the Human Cell Atlas (HCA), the Kidney Precision Medicine Project (KPMP), and the Genotype Tissue Expression project (GTEx). Further, 5,856 tissue sections were derived from 506 HuBMAP tissue blocks. The second exploration user interface enables consortia to evaluate data quality, explore tissue data spatially within the context of the HRA, and guide data acquisition. A companion website is at https://cns-iu.github.io/HRA-supporting-information/
    corecore