2,020 research outputs found

    Towards all-numerical implementation of correlation

    No full text
    International audienceInterestingly, the past 20 years have provided us many examples of optical correlation methods for pattern recognition, e.g. VanderLugt correlator (VLC). In recent years, hybrid techniques, i.e. numerical implementation of correlation, have been also considered an alternative to all-optical methods because they show a good compromise between performance and simplicity. Moreover, these correlation methods can be implemented using an all-numerical and reprogrammable target such as the graphics processor unit (GPU), or the field-programmable gate array (FPGA). However, this numerical procedure requires realizing two Fourier Transforms (FT), a spectral multiplication, and a correlation plane analysis. The purpose of this study is to compare the performances of a numerical correlator based on the fast Fourier transform (FFT) with that relying on a simulation of the Fraunhofer diffraction. Different tests using the Pointing Head Pose Image Database (PHPID) and considering faces with vertical and horizontal rotations were performed with the code MATLAB. Tests were conducted with a five reference optimized composite filter. The receiving operating characteristics (ROC) curves show that the optical FT simulating the Fraunhofer diffraction leads to better performances than the FFT. The implications of our results for correlation are discussed

    Exploring underwater target detection by imaging polarimetry and correlation techniques

    No full text
    International audienceUnderwater target detection is investigated by combining active polarization imaging and optical correlation-based approaches. Experiments were conducted in a glass tank filled with tap water with diluted milk or seawater and containing targets of arbitrary polarimetric responses. We found that target estimation obtained by imaging with two orthogonal polarization states always improves detection performances when correlation is used as detection criterion. This experimentally study illustrates the potential of polarization imaging for underwater target detection and opens interesting perspectives for the development of underwater imaging systems

    Engineering an artificial pathway for Cis-Α-irone biosynthesis

    Get PDF
    Please click Additional Files below to see the full abstrac

    Engineering an artificial pathway for Cis-alpha-irone biosynthesis

    Get PDF
    Please click Additional Files below to see the full abstrac

    Single InAsP/InP quantum dots as telecommunications-band photon sources

    Full text link
    The optical properties of single InAsP/InP quantum dots are investigated by spectrally-resolved and time-resolved photoluminescence measurements as a function of excitation power. In the short-wavelength region (below 1.45 μ\mum), the spectra display sharp distinct peaks resulting from the discrete electron-hole states in the dots, while in the long-wavelength range (above 1.45 μ\mum), these sharp peaks lie on a broad spectral background. In both regions, cascade emission observed by time-resolved photoluminescence confirms that the quantum dots possess discrete exciton and multi-exciton states. Single photon emission is reported for the dots emitting at 1.3 μ\mum through anti-bunching measurements

    Reconnaissance des objets manufacturés dans des vidéos sous-marines

    Get PDF
    Les mines sous marines sont très utilisées dans les conflits. Pour contrer cette menace, les marines s'équipent de moyens de lutte anti-mine autonomes afin d'éviter l'intervention humaine. Une mission de guerre des mines se découpe en quatre étapes distinctes : la détection des objets, la classification et l'identification puis la neutralisation. Cette thèse propose des solutions algorithmiques pour l'étape d'identification par caméra vidéo. Le drone d'identification connaît la position approximative de l'objet à identifier. La première mission de ce drone est de re-détecter l'objet avant de le classifier et de l'identifier. Le milieu sous-marin perturbe les images acquises par la caméra (absorption, diffusion). Pour faciliter la détection et la reconnaissance (classification et identification), nous avons prétraité les images. Nous avons proposé deux méthodes de détection des objets. Tout d'abord nous modifions le spectre de l'image afin d'obtenir une image dans laquelle il est possible de détecter les contours des objets. Une seconde méthode a été développée à partir de la soustraction du fond, appris en début de séquence vidéo. Les résultats obtenus avec cette seconde méthode ont été comparés à une méthode existante. Lorsqu'il y a une détection, nous cherchons à reconnaître l'objet. Pour cela, nous utilisons la corrélation. Les images de référence ont été obtenues à partir d'images de synthèse 3D des mines. Pour les différentes méthodes utilisées, nous avons optimisés les résultats en utilisant les informations de navigation. En effet, selon les déplacements du drone, nous pouvons fixer des contraintes qui vont améliorer la détection et réduire le temps de calcul nécessaire à l'identification.To avoid the underwater mine threat and to limit human interventions, navies use autonomous underwater vehicles. An underwater mine warfare mission is divided into four steps : object detection, classification, identification and neutralization. This PhD thesis proposes algorithmic solutions for the identification step done with a video camera. Thanks to the detection step, the identification vehicle knows approximately the object position. First, the vehicle has to detect and position this object exactly. Then it will be classified and identified. The underwater medium affects the images acquired with a video camera through absorption and scattering. The first step of our algorithm is to preprocess the images to help the detection and recognition (classification and identification) steps.We have proposed two detection methods. The first one consists in modifying image spectrum in order to obtain an image in which we will be able to detect edges of objects. The second method, based on region segmentation, has been developed from background subtraction methods. The background image has been learned at the beginning of the video when there is no object. The results of the latter have been compared to those obtained with a state-of-art method, on data acquired at sea. Once we have detected an object, we want to recognize it. For that, we use the correlation technique. The reference images have been obtained from 3D computer generated images of mines. This novel approach gives promising results. For each developed method, we have optimized the results through the use of navigational information. Indeed, depending on vehicle's motion, we can set constraints to improve the detection step and reduce processing time.BREST-SCD-Bib. electronique (290199901) / SudocSudocFranceF

    The Impact of Diffusive Water Vapor Transport on Snow Profiles in Deep and Shallow Snow Covers and on Sea Ice

    Get PDF
    Water vapor transport has been highlighted as a critical process in Arctic snowpacks, shaping the snow cover structure in terms of density, thermal conductivity, and temperature profile among others. Here, we present an attempt to describe the thermally-induced vertical diffusion of water vapor in the snow cover and its effects of the snowpack structure using the SNOWPACK model. Convection, that may also constitute a significant part of vapor transport, is not addressed. Assuming saturated conditions at the upper boundary of the snowpack and as initial condition, the vapor flux between snow layers is expressed by a 1-dimensional transient diffusion equation, which is solved with a finite difference routine. The implications on the snowpack of this vertical diffusive flux, are analyzed using metrics such as the cumulative density change due to diffusive vapor transport, the degree of over- or undersaturation, the instantaneous snow density change rate, and the percentage of snow density change. We present results for four different regions sampling the space of natural snow cover variability: Alpine, Subarctic, Arctic, and Antarctic sea ice. The largest impact of diffusive water vapor transport is observed in snow on sea ice in the Weddell Sea and the shallow Arctic snowpack. The simulations show significant density reductions upon inclusion of diffusive water vapor transport: cumulative density changes from diffusive vapor transport can reach �62 and �66 kg m�3 for the bottom layer in the shallow Arctic snowpack and snow on sea ice, respectively. For comparison, in deeper snow covers, they rarely exceed �40 kg m�3. This leads to changes in density for shallow snowpacks at the soil-snow interface in the range of �5 to �21%. Mirroring the density decease at depth is a thicker deposition layer above it with increase in density around 7.5%. Similarly, for the sea ice, the density decreased at the sea ice-snow interface by �20%. We acknowledge that vapor transport by diffusion may in some snow covers�such as in thin tundra snow�be small compared to convective transport, which will have to be addressed in future work

    Adaptive nonlinear fringe-adjusted joint transform correlator

    Full text link
    International audienceAn optimized technique based on the fringe-adjustedJTC (joint transform correlator) architecture is proposed and validated for rotation invariant recognition and tracking of a target in an unknown input scene. To enhance the robustness of the proposed technique, we used a three-step optimization by: (1) utilizing the fringe-adjusted filter (HFAF) in the Fourier plane, (2) adding nonlinear processing in the Fourier plane, and (3) using a new decision criterion in the correlation plane by considering the correlation peak energy and the highest peaks outside the desired correlation peak. Several tests were conducted to reduce the number of reference images needed for fast tracking while ensuring robust discrimination and efficient tracking of thedesired target. Test results obtained using the PHPID (Pointing Head Pose Image Database) data baseconfirm robust performance of the proposed method for face recognition and tracking applications. Thereafter, we also tested the proposed technique for a challenging application i.e. underwater mine detection and excellent results were obtained

    Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life

    Get PDF
    In mammals, spermatogonial cells (SCs) are undifferentiated male germ cells in testis quiescent until birth that self-renew and differentiate to produce spermatogenic cells and functional sperm across life. The transcriptome of SCs is highly dynamic and timely regulated during postnatal development. We examined if such dynamics involves changes in chromatin organization by profiling the transcriptome and chromatin accessibility in SCs from early postnatal stages to adulthood in mice using RNA-seq and ATAC-seq. By integrating transcriptomic and epigenomic features, we show that SCs undergo massive chromatin remodeling during postnatal development that correlates with distinct gene expression profiles and transcription factors (TF) motif enrichment. We identify genomic regions with significantly different chromatin accessibility in adult SCs that are marked by histone modifications associated with enhancers and promoters. Some of the regions with increased accessibility correspond to transposable element subtypes enriched in multiple TFs motifs and close to differentially expressed genes. Our results underscore the dynamics of chromatin organization in developing germ cells and the involvement of the regulatory genome

    Responsiveness of EORTC QLQ-C30, QLQ-CR38 and FACT-C quality of life questionnaires in patients with colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to compare the responsiveness of the European Organization for Research and Treatment (EORTC) quality of life questionnaires (QLQ-C30, QLQ-CR38) and the Functional Assessment of Cancer Therapy-colorectal version 4 questionnaire (FACT-C).</p> <p>Method</p> <p>This prospective study included 127 patients with colorectal cancer: 71 undergoing chemotherapy and 56 radiation therapy. Responsiveness statistics included the Standardized Response Mean (SRM) and the Effect Size (ES). The patient's overall assessment of his/her change in state of health status was the reference criterion to evaluate the responsiveness of the QoL questionnaires.</p> <p>Results</p> <p>34 patients perceived their health as stable and 17 as improved between the first and the fourth courses of chemotherapy. 21 patients perceived their health as stable and 22 as improved between before and the last week of radiotherapy.</p> <p>The responsiveness of the 3 questionnaires differed according to treatments. The EORTC QLQ-C30 questionnaire was more responsive in patients receiving chemotherapy, particulary functional scales (SRM > 0.55). The QLQ-CR38 and the FACT-C questionnaires provided little clinically relevant information during chemotherapy or radiotherapy.</p> <p>Conclusion</p> <p>The EORTC QLQ-C30 questionnaire appears to be more responsive in patients receiving chemotherapy.</p
    corecore