15 research outputs found
Additive manufacturing of crack-free Al-alloy with coarsening-resistant τ<inf>1</inf>-CeAlSi strengthening phase
Wrought aluminium alloys popular for automotive and aerospace applications are susceptible to solidification cracking when fabricated via laser powder bed fusion (LPBF). Another long-standing and common issue for these alloys is microstructure coarsening and corresponding strength loss caused by elevated temperature exposure. To tackle these challenges, this study designs and develops a class of 1–4 wt% Ce modified Al6061 alloys. The best alloy, with 3 wt% Ce, achieves crack-free fabrication via LPBF due to a reduction in the solidification temperature range and a new solidification pathway that achieved 0.9 solid mass fraction at just 14 °C below the solidification onset. Furthermore, a fine microstructure consisting of coarsening-resistant τ1-CeAlSi eutectic forms, and after hot isostatic pressing, the tensile strength and elongation of the 3 wt% Ce alloy can reach 153 ± 6 MPa and 18.3% at room temperature and 89 ± 6 MPa and 32.5% at 200 °C, respectively. The observed ductility is attributed to nanoscale dispersion of discrete, coarsening resistant τ1-CeAlSi particles within grains and to the presence of large columnar α-Al grains. Meanwhile, solidification cracking was inhibited by continuous grain boundary τ1-CeAlSi eutectic accumulation, which converted to discrete nanoscale τ1-CeAlSi after hot isostatic pressing. This research uncovers a simple and effective approach of designing Al-alloys for LPBF with great potential for both room temperature and high temperature applications in automotive and aerospace industries
Search for strongly interacting massive particles generating trackless jets in proton–proton collisions at
A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 16.1fb, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100GeV are excluded and further sensitivity is explored towards higher masses
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Assessment of environmentally persistent free radicals in soils and sediments from three Superfund sites
We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ∼30×, ∼12×, and ∼2× higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0 G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment. © 2014 The Royal Society of Chemistry
Societal Cost-Benefit Analysis of Electric Vehicles in the Philippines with the Inclusion of Impacts to Balance of Payments
Countries globally have committed to deploy electric vehicles immensely within the decade. However; these deployments at an early stage come at a huge cost to governments. The high ownership costs of electric vehicles require them to be supported by subsidies; tax exemptions and other incentives ___ not to mention the costs of installing new charging infrastructure. Several cost-benefit studies have looked into various components; and this present work aims to contribute to the literature by estimating the impact to the country\u27\u27s trade deficit or surplus. While ownership cost parity between electric vehicles and internal combustion vehicles might be farfetched; the modeling results in this study show that electric vehicles can achieve societal cost-benefit parity with internal combustion vehicles within the decade. This finding can provide a strong justification for subsidies and incentives provided to electric vehicles. To conclude; the authors provide some policy implications supporting the local production of electric vehicles
Effect of Low Temperature Thermal Treatment on Soils Contaminated with Pentachlorophenol and Environmentally Persistent Free Radicals
The effect of low temperature thermal treatment on soils from a former Superfund wood-treating site contaminated with pentachlorophenol (PCP) and the environmentally persistent free radical (EPFR), pentachlorophenoxyl, was determined. The pentachlorophenoxyl EPFRs’ and the PCP molecules’ chemical behavior were simultaneously monitored at temperatures ranging from 25 °C to 300 °C via electron paramagnetic resonance (EPR) spectroscopy and GC-MS analysis, respectively. Two types of thermal treatment were employed: a closed heating (oxygen-starved condition) where the soil was heated under vacuum and an open heating system (oxygen-rich conditions), where the soil was heated in ambient air. EPR analyses for closed heating indicated the EPFR concentration was 2–12 × 10(18) spins/g of soil, with a g-factor and linewidth (ΔHp-p) of 2.00311 – 2.00323 and 4.190 – 5.472 Gauss, respectively. EPR analyses for the open heating soils revealed a slightly broader and weaker radical signal, with a concentration of 1–10 × 10(18) spins/g of soil, g-factor of 2.00327 – 2.00341, and ΔHp-p of 5.209 – 6.721 Gauss. This suggested the open heating resulted in the formation of a more oxygen-centered structure of the pentachlorophenoxyl radical or additional, similar radicals. The EPFR concentration peaked at 10 × 10(18) spins/g of soil at 100 °C for open heating and 12 × 10(18) spins/g at 75 °C for closed heating. The half-lives of the EPFRs were 2 – 24 days at room temperature in ambient air. These results suggest low temperature treatment of soils contaminated with PCP can convert the PCP to potentially more toxic pentachlorophenoxyl EPFRs, which may persist in the environment long enough for human exposure