19 research outputs found

    First analysis of inclined air showers detected by Tunka-Rex

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers

    The energy spectrum of cosmic rays beyond the turn-down around 10^17 eV as measured with the surface detector of the Pierre Auger Observatory

    Get PDF
    We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays

    Present status and prospects of the Tunka Radio Extension

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital radio array operating in the frequency band of 30-80 MHz and detecting radio emission from air-showers produced by cosmic rays with energies above 100 PeV. The experimentis installed at the site of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) observatory and performs joint measurements with the co-located particle and air-Cherenkov detectors in passive mode receiving a trigger from the latter. Tunka-Rex collects data since 2012, and during the last five years went throughseveral upgrades. As a result the density of the antenna field was increased by three times since its commission. In this contribution we present the latest results of Tunka-Rex experiment, particularly an updated analysis and efficiency study, which have been applied to the measurement of the mean shower maximum as a function of energy for cosmic rays of energies up to EeV. The future plans are also discussed: investigations towards an energy spectrum of cosmic rays with Tunka-Rex and their mass composition using a combination of Tunka-Rex data with muon measurements by the particle detector Tunka-Grande

    Present status and prospects of the Tunka Radio Extension

    No full text
    The Tunka Radio Extension (Tunka-Rex) is a digital radio array operating in the frequency band of 30-80 MHz and detecting radio emission from air-showers produced by cosmic rays with energies above 100 PeV. The experimentis installed at the site of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) observatory and performs joint measurements with the co-located particle and air-Cherenkov detectors in passive mode receiving a trigger from the latter. Tunka-Rex collects data since 2012, and during the last five years went throughseveral upgrades. As a result the density of the antenna field was increased by three times since its commission. In this contribution we present the latest results of Tunka-Rex experiment, particularly an updated analysis and efficiency study, which have been applied to the measurement of the mean shower maximum as a function of energy for cosmic rays of energies up to EeV. The future plans are also discussed: investigations towards an energy spectrum of cosmic rays with Tunka-Rex and their mass composition using a combination of Tunka-Rex data with muon measurements by the particle detector Tunka-Grande

    First analysis of inclined air showers detected by Tunka-Rex

    No full text
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    No full text
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with the TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km2. In the present workwe discuss the improvements of the signal reconstruction applied for Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performanceof matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised traces, i.e. removes all signal-unrelated amplitudes. We present the comparison between the standard method of signal reconstruction, matched filtering and the autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection

    First analysis of inclined air showers detected by Tunka-Rex

    Get PDF
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers
    corecore