225 research outputs found
The variance of identity-by-descent sharing in the Wright-Fisher model
Widespread sharing of long, identical-by-descent (IBD) genetic segments is a
hallmark of populations that have experienced recent genetic drift. Detection
of these IBD segments has recently become feasible, enabling a wide range of
applications from phasing and imputation to demographic inference. Here, we
study the distribution of IBD sharing in the Wright-Fisher model. Specifically,
using coalescent theory, we calculate the variance of the total sharing between
random pairs of individuals. We then investigate the cohort-averaged sharing:
the average total sharing between one individual and the rest of the cohort. We
find that for large cohorts, the cohort-averaged sharing is distributed
approximately normally. Surprisingly, the variance of this distribution does
not vanish even for large cohorts, implying the existence of "hyper-sharing"
individuals. The presence of such individuals has consequences for the design
of sequencing studies, since, if they are selected for whole-genome sequencing,
a larger fraction of the cohort can be subsequently imputed. We calculate the
expected gain in power of imputation by IBD, and subsequently, in power to
detect an association, when individuals are either randomly selected or
specifically chosen to be the hyper-sharing individuals. Using our framework,
we also compute the variance of an estimator of the population size that is
based on the mean IBD sharing and the variance in the sharing between inbred
siblings. Finally, we study IBD sharing in an admixture pulse model, and show
that in the Ashkenazi Jewish population the admixture fraction is correlated
with the cohort-averaged sharing.Comment: Includes Supplementary Materia
Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History
Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics research. We present analytical results on the relationship between haplotype sharing across purportedly unrelated individuals and a populationâs demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as a function of the populationâs demography, and we derive an inference procedure to reconstruct such demographic history. The accuracy of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event, consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically structured demographies might explain the unexpected abundance of runs of homozygosity within several populations
Recommended from our members
COMT genetic variation confers risk for psychotic and affective disorders: a case control study
BACKGROUND: Variation in the COMT gene has been implicated in a number of psychiatric disorders, including psychotic, affective and anxiety disorders. The majority of these studies have focused on the functional Val108/158Met polymorphism and yielded conflicting results, with limited studies examining the relationship between other polymorphisms, or haplotypes, and psychiatric illness. We hypothesized that COMT variation may confer a general risk for psychiatric disorders and have genotyped four COMT variants (Val158Met, rs737865, rs165599, and a SNP in the P2 promoter [-278A/G; rs2097603]) in 394 Caucasian cases and 467 controls. Cases included patients with schizophrenia (n = 196), schizoaffective disorder (n = 62), bipolar disorder (n = 82), major depression (n = 30), and patients diagnosed with either psychotic disorder NOS or depressive disorder NOS (n = 24). RESULTS: SNP rs2097603, the Val/Met variant and SNP rs165599 were significantly associated (p = 0.004; p = 0.05; p = 0.035) with a broad "all affected" diagnosis. Haplotype analysis revealed a potentially protective G-A-A-A haplotype haplotype (-278A/G; rs737865; Val108/158Met; rs165599), which was significantly underrepresented in this group (p = 0.0033) and contained the opposite alleles of the risk haplotype previously described by Shifman et al. Analysis of diagnostic subgroups within the "all affecteds group" showed an association of COMT in patients with psychotic disorders as well as in cases with affective illness although the associated variants differed. The protective haplotype remained significantly underrepresented in most of these subgroups. CONCLUSION: Our results support the view that COMT variation provides a weak general predisposition to neuropsychiatric disease including psychotic and affective disorders
Interaction of Cannabis Use Disorder and Striatal Connectivity in Antipsychotic Treatment Response
Antipsychotic (AP) medications are the mainstay for the treatment of schizophrenia spectrum disorders (SSD), but their efficacy is unpredictable and widely variable. Substantial efforts have been made to identify prognostic biomarkers that can be used to guide optimal prescription strategies for individual patients. Striatal regions involved in salience and reward processing are disrupted as a result of both SSD and cannabis use, and research demonstrates that striatal circuitry may be integral to response to AP drugs. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between a history of cannabis use disorder (CUD) and a striatal connectivity index (SCI), a previously developed neural biomarker for AP treatment response in SSD. Patients were part of a 12-week randomized, double-blind controlled treatment study of AP drugs. A sample of 48 first-episode SSD patients with no more than 2 weeks of lifetime exposure to AP medications, underwent a resting-state fMRI scan pretreatment. Treatment response was defined a priori as a binary (response/nonresponse) variable, and a SCI was calculated in each patient. We examined whether there was an interaction between lifetime CUD history and the SCI in relation to treatment response. We found that CUD history moderated the relationship between SCI and treatment response, such that it had little predictive value in SSD patients with a CUD history. In sum, our findings highlight that biomarker development can be critically impacted by patient behaviors that influence neurobiology, such as a history of CUD
Collective genomic segments with differential pleiotropic patterns between cognitive dimensions and psychopathology
Cognitive deficits are known to be related to most forms of psychopathology. Here, we perform local genetic correlation analysis as a means of identifying independent segments of the genome that show biologically interpretable pleiotropic associations between cognitive dimensions and psychopathology. We identify collective segments of the genome, which we call meta-loci , showing differential pleiotropic patterns for psychopathology relative to either cognitive task performance (CTP) or performance on a non-cognitive factor (NCF) derived from educational attainment. We observe that neurodevelopmental gene sets expressed during the prenatal-early childhood period predominate in CTP-relevant meta-loci, while post-natal gene sets are more involved in NCF-relevant meta-loci. Further, we demonstrate that neurodevelopmental gene sets are dissociable across CTP meta-loci with respect to their spatial distribution across the brain. Additionally, we find that GABA-ergic, cholinergic, and glutamatergic genes drive pleiotropic relationships within dissociable meta-loci
Collective genomic segments with differential pleiotropic patterns between cognitive dimensions and psychopathology
Cognitive deficits are known to be related to most forms of psychopathology. Here, we perform local genetic correlation analysis as a means of identifying independent segments of the genome that show biologically interpretable pleiotropic associations between cognitive dimensions and psychopathology. We identify collective segments of the genome, which we call âmeta-lociâ, showing differential pleiotropic patterns for psychopathology relative to either cognitive task performance (CTP) or performance on a non-cognitive factor (NCF) derived from educational attainment. We observe that neurodevelopmental gene sets expressed during the prenatal-early childhood period predominate in CTP-relevant meta-loci, while post-natal gene sets are more involved in NCF-relevant meta-loci. Further, we demonstrate that neurodevelopmental gene sets are dissociable across CTP meta-loci with respect to their spatial distribution across the brain. Additionally, we find that GABA-ergic, cholinergic, and glutamatergic genes drive pleiotropic relationships within dissociable meta-loci
Lower orbital frontal white matter integrity in adolescents with bipolar I disorder.
ABSTRACT Objective: To examine white matter microstructure, as assessed via diffusion tensor imaging (DTI), in adolescents with bipolar I disorder compared with control volunteers. Method: Twenty-six (12 male and 14 female subjects) adolescents (mean age, 16.0 years) with bipolar I disorder and 26 (14 male and 12 female subjects) control volunteers (mean age, 15.3 years) completed structural and DTI examinations. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were compared between groups in the brain white matter using a voxelwise analysis after intersubject registration to Talairach space. Exploratory analyses were performed to assess structureYfunction correlations in a subgroup of 11 patients with available neuropsychological measures. Results: Compared with the control volunteers, the patients demonstrated abnormalities in white matter regions predicted to differ a priori between groups, including lower FA in the right orbital frontal lobe and higher ADC in the right and left subgenual region (p < .005, uncorrected; cluster size Q 100). There were no areas of higher FA or lower ADC in patients compared with control volunteers. Lower FA across regions that differed significantly between groups correlated significantly with slower visuomotor speed among patients with bipolar disorder. Conclusions: Abnormalities involving the orbital frontal and subgenual white matter in adolescents with bipolar disorder are consistent with neurobiological models that implicate dysregulation of affective systems and impulsivity in the pathophysiology of the disorder. Preliminary findings suggest that white matter abnormalities in pediatric bipolar disorder have functional correlates and may be useful in constructing neurobiological models of the disorder
Implications for health and disease in the genetic signature of the Ashkenazi Jewish population
Relatively small, reproductively isolated populations with reduced genetic diversity may have advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents a unique population for study based on its recent (< 1,000 year) history of a limited number of founders, population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant alleles and pathways. Using clustering, principal components, and pairwise genetic distance as converging approaches, we identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception, potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population. Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and not related to host country of origin. The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be components of population-specific genomic differences in key functional pathways
Concerns About the Use of Polygenic Embryo Screening for Psychiatric and Cognitive Traits
Private companies have begun offering services to allow parents undergoing in-vitro fertilisation to screen embryos for genetic risk of complex diseases, including psychiatric disorders. This procedure, called polygenic embryo screening, raises several difficult scientific and ethical issues, as discussed in this Personal View. Polygenic embryo screening depends on the statistical properties of polygenic risk scores, which are complex and not well studied in the context of this proposed clinical application. The clinical, social, and ethical implications of polygenic embryo screening have barely been discussed among relevant stakeholders. To our knowledge, the International Society of Psychiatric Genetics is the first professional biomedical organisation to issue a statement regarding polygenic embryo screening. For the reasons discussed in this Personal View, the Society urges caution and calls for additional research and oversight on the use of polygenic embryo screening
A Randomized Comparison of Aripiprazole and Risperidone for the Acute Treatment of First-Episode Schizophrenia and Related Disorders: 3-Month Outcomes
Research findings are particularly important for medication choice for first-episode patients as individual prior medication response to guide treatment decisions is unavailable. We describe the first large-scale double-masked randomized comparison with first-episode patients of aripiprazole and risperidone, 2 commonly used first-episode treatment agents. One hundred ninety-eight participants aged 15-40 years with schizophrenia, schizophreniform disorder, schizoaffective disorder or psychotic disorder Not Otherwise Specified, and who had been treated in their lifetime with antipsychotics for 2 weeks or less were randomly assigned to double-masked aripiprazole (5-30mg/d) or risperidone (1-6mg/d) and followed for 12 weeks. Positive symptom response rates did not differ (62.8% vs 56.8%) nor did time to response. Aripiprazole-treated participants had better negative symptom outcomes but experienced more akathisia. Body mass index change did not differ between treatments but advantages were found for aripiprazole treatment for total and low-density lipoprotein cholesterol, fasting glucose, and prolactin levels. Post hoc analyses suggested advantages for aripiprazole on depressed mood. Overall, if the potential for akathisia is a concern, low-dose risperidone as used in this trial maybe a preferred choice over aripiprazole. Otherwise, aripiprazole would be the preferred choice over risperidone in most situations based upon metabolic outcome advantages and some symptom advantages within the context of similar positive symptom response between medications
- âŠ