5,431 research outputs found
When trees grow too long: Investigating the causes of highly inaccurate bayesian branch-length estimates
A surprising number of recent Bayesian phylogenetic analyses contain branch-length estimates that are several orders of magnitude longer than corresponding maximum-likelihood estimates. The levels of divergence implied by such branch lengths are unreasonable for studies using biological data and are known to be false for studies using simulated data. We conducted additional Bayesian analyses and studied approximate-posterior surfaces to investigate the causes underlying these large errors. We manipulated the starting parameter values of the Markov chain Monte Carlo (MCMC) analyses, the moves used by the MCMC analyses, and the prior-probability distribution on branch lengths. We demonstrate that inaccurate branch-length estimates result from either 1) poor mixing of MCMC chains or 2) posterior distributions with excessive weight at long tree lengths. Both effects are caused by a rapid increase in the volume of branch-length space as branches become longer. In the former case, both an MCMC move that scales all branch lengths in the tree simultaneously and the use of overdispersed starting branch lengths allow the chain to accurately sample the posterior distribution and should be used in Bayesian analyses of phylogeny. In the latter case, branch-length priors can have strong effects on resulting inferences and should be carefully chosen to reflect biological expectations. We provide a formula to calculate an exponential rate parameter for the branch-length prior that should eliminate inference of biased branch lengths in many cases. In any phylogenetic analysis, the biological plausibility of branch-length output must be carefully considered
The importance of data partitioning and the utility of bayes factors in bayesian phylogenetics
As larger, more complex data sets are being used to infer phylogenies, accuracy of these phylogenies increasingly requires models of evolution that accommodate heterogeneity in the processes of molecular evolution. We investigated the effect of improper data partitioning on phylogenetic accuracy, as well as the type I error rate and sensitivity of Bayes factors, a commonly used method for choosing among different partitioning strategies in Bayesian analyses. We also used Bayes factors to test empirical data for the need to divide data in a manner that has no expected biological meaning. Posterior probability estimates are misleading when an incorrect partitioning strategy is assumed. The error was greatest when the assumed model was underpartitioned. These results suggest that model partitioning is important for large data sets. Bayes factors performed well, giving a 5% type I error rate, which is remarkably consistent with standard frequentist hypothesis tests. The sensitivity of Bayes factors was found to be quite high when the across-class model heterogeneity reflected that of empirical data. These results suggest that Bayes factors represent a robust method of choosing among partitioning strategies. Lastly, results of tests for the inclusion of unexpected divisions in empirical data mirrored the simulation results, although the outcome of such tests is highly dependent on accounting for rate variation among classes. We conclude by discussing other approaches for partitioning data, as well as other applications of Bayes factors. Copyright © Society of Systematic Biologists
Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals
Alternative derivation of the relativistic contribution to perihelic precession
An alternative derivation of the first-order relativistic contribution to
perihelic precession is presented. Orbital motion in the Schwarzschild geometry
is considered in the Keplerian limit, and the orbit equation is derived for
approximately elliptical motion. The method of solution makes use of coordinate
transformations and the correspondence principle, rather than the standard
perturbative approach. The form of the resulting orbit equation is similar to
that derived from Newtonian mechanics and includes first-order corrections to
Kepler's orbits due to general relativity. The associated relativistic
contribution to perihelic precession agrees with established first-order
results. The reduced radius for the circular orbit is in agreement to
first-order with that calculated from the Schwarzschild effective potential.
The method of solution is understandable by undergraduate students.Comment: 12 pages, 2 figures. Accepted for publication in the American Journal
of Physic
Flow probe of symmetry energy in relativistic heavy-ion reactions
Flow observables in heavy-ion reactions at incident energies up to about 1
GeV per nucleon have been shown to be very useful for investigating the
reaction dynamics and for determining the parameters of reaction models based
on transport theory. In particular, the elliptic flow in collisions of
neutron-rich heavy-ion systems emerges as an observable sensitive to the
strength of the symmetry energy at supra-saturation densities. The comparison
of ratios or differences of neutron and proton flows or neutron and hydrogen
flows with predictions of transport models favors an approximately linear
density dependence, consistent with ab-initio nuclear-matter theories.
Extensive parameter searches have shown that the model dependence is comparable
to the uncertainties of existing experimental data. Comprehensive new flow data
of high accuracy, partly also through providing stronger constraints on model
parameters, can thus be expected to improve our knowledge of the equation of
state of asymmetric nuclear matter.Comment: 20 pages, 24 figures, review to appear in EPJA special volume on
nuclear symmetry energ
Codeless GPS Applications to Multi-Path: CGAMP
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection
From Display to Labelled Proofs for Tense Logics
We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt
Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales
We present an extension of our recently introduced molecular density
functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619,
2013] to the solvation of hydrophobic solutes of various sizes, going from
angstroms to nanometers. The theory is based on the quadratic expansion of the
excess free energy in terms of two classical density fields, the particle
density and the multipolar polarization density. Its implementation requires as
input a molecular model of water and three measurable bulk properties, namely
the structure factor and the k-dependent longitudinal and transverse dielectric
susceptibilities. The fine three-dimensional water structure around small
hydrophobic molecules is found to be well reproduced. In contrast the computed
solvation free-energies appear overestimated and do not exhibit the correct
qualitative behavior when the hydrophobic solute is grown in size. These
shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by
complementing the functional with a truncated hard-sphere functional acting
beyond quadratic order in density. It makes the resulting functional compatible
with the Van-der-Waals theory of liquid-vapor coexistence at long range.
Compared to available molecular simulations, the approach yields reasonable
solvation structure and free energy of hard or soft spheres of increasing size,
with a correct qualitative transition from a volume-driven to a surface-driven
regime at the nanometer scale.Comment: 24 pages, 8 figure
- …