37 research outputs found

    Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO2 seeps

    Full text link
    Ocean acidification, caused by anthropogenic CO 2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival

    Phylogeny of Amphidinium (Dinophyceae) from Guam and Okinawa, with descriptions of A. pagoense sp. nov. and A. uduigamense sp. nov.

    Get PDF
    Marine benthic dinoflagellates within the genus Amphidinium were isolated from Guam and Okinawa. Isolated strains were identified to species-level using phylogenetic analyses of 28S rRNA and ITS-5.8S rRNA genes as well as microscopy. Of the six isolated strains, two were new species: A. pagoense sp. nov. and A. uduigamense sp. nov. Other isolates included strains of A. massartii and A. operculatum from Guam, and two strains of A. operculatum from Okinawa. Both new species were described using light and electron microscopy (SEM and TEM). The combination of characteristics that make A. pagoense sp. nov. unique includes a pair of centrally-located pyrenoids, variable cell shape, absence of scales and a long, curved ventral ridge. For A. uduigamense sp. nov., a combination of several morphological features distinguishes it from other species. These include a constriction near the anterior of the hypocone, two centrally located pyrenoids, a longitudinal flagellum inserted in the posterior one-third of the cell, cell size, cell division in the motile stage and the absence of scales. Toxicity was confirmed in these two novel species by testing methanol extracts in an Artemia bioassay. Previously unrecorded ITS rRNA gene sequences from A. operculatum were also sequenced from both locations. Species identified and newly described in this study expand the taxonomic knowledge of Amphidinium in the Pacific.journal articl

    Housekeeping Mutualisms: Do More Symbionts Facilitate Host Performance?

    Get PDF
    Mutualisms often involve one host supporting multiple symbionts, whose identity, density and intraguild interactions can influence the nature of the mutualism and performance of the host. However, the implications of multiple co-occurring symbionts on services to a host have rarely been quantified. In this study, we quantified effects of decapod symbionts on removal of sediment from their coral host. Our field survey showed that all common symbionts typically occur as pairs and never at greater abundances. Two species, the crab Trapezia serenei and the shrimp Alpheus lottini, were most common and co-occurred more often than expected by chance. We conducted a mesocosm experiment to test for effects of decapod identity and density on sediment removal. Alone, corals removed 10% of sediment, but removal increased to 30% and 48% with the presence of two and four symbionts, respectively. Per-capita effects of symbionts were independent of density and identity. Our results suggest that symbiont density is restricted by intraspecific competition. Thus, increased sediment removal from a coral host can only be achieved by increasing the number of species of symbionts on that coral, even though these species are functionally equivalent. Symbiont diversity plays a key role, not through added functionality but by overcoming density limitation likely imposed by intraspecific mating systems

    Re-evaluating the phylogeny of Sipuncula through transcriptomics

    Get PDF
    Sipunculans (also known as peanut worms) are an ancient group of exclusively marine worms with a global distribution and a fossil record that dates back to the Early Cambrian. The systematics of sipunculans, now considered a distinct subclade of Annelida, has been studied for decades using morphological and molecular characters, and has reached the limits of Sanger-based approaches. Here, we reevaluate their family-level phylogeny by comparative transcriptomic analysis of eight species representing all known families within Sipuncula. Two data matrices with alternative gene occupancy levels (large matrix with 675 genes and 62% missing data; reduced matrix with 141 genes and 23% missing data) were analysed using concatenation and gene-tree methods, yielding congruent results and resolving each internal node with maximum support. We thus corroborate prior phylogenetic work based on molecular data, resolve outstanding issues with respect to the familial relationships of Aspidosiphonidae, Antillesomatidae and Phascolosomatidae, and highlight the next area of focus for sipunculan systematics

    Three new species of Nautilus Linnaeus, 1758 (Mollusca, Cephalopoda) from the Coral Sea and South Pacific

    Get PDF
    Nautiloids are a charismatic group of marine molluscs best known for their rich fossil record, but today they are restricted to a handful of species in the family Nautilidae from around the Coral Triangle. Recent genetic work has shown a disconnect between traditional species, originally defined on shell characters, but now with new findings from genetic structure of various Nautilus populations. Here, three new species of Nautilus from the Coral Sea and South Pacific region are formally named using observations of shell and soft anatomical data augmented by genetic information: N. samoaensis sp. nov. (from American Samoa), N. vitiensis sp. nov. (from Fiji), and N. vanuatuensis sp. nov. (from Vanuatu). The formal naming of these three species is timely considering the new and recently published information on genetic structure, geographic occurrence, and new morphological characters, including color patterns of shell and soft part morphology of hood, and will aid in managing these possibly endangered animals. As recently proposed from genetic analyses, there is a strong geographic component affecting taxonomy, with the new species coming from larger island groups that are separated by at least 200 km of deep water (greater than 800 m) from other Nautilus populations and potential habitats. Nautilid shells implode at depths greater than 800 m and depth therefore acts as a biogeographical barrier separating these species. This isolation, coupled with the unique, endemic species in each locale, are important considerations for the conservation management of the extant Nautilus species and populations

    Nacre tablet thickness records formation temperature in modern and fossil shells

    Get PDF
    Nacre, the iridescent outer lining of pearls and inner lining of many mollusk shells, is composed of periodic, parallel, organic sheets alternating with aragonite (CaCO_3) tablet layers. Nacre tablet thickness (TT) generates both nacre's iridescence and its remarkable resistance to fracture. Despite extensive studies on how nacre forms, the mechanisms controlling TT remain unknown, even though they determine the most conspicuous of nacre's characteristics, visible even to the naked eye. Thermodynamics predicts that temperature (T) will affect both physical and chemical components of biomineralized skeletons. The chemical composition of biominerals is well-established to record environmental parameters, and has therefore been extensively used in paleoclimate studies. The physical structure, however, has been hypothesized but never directly demonstrated to depend on the environment. Here we observe that the physical TT in nacre from modern and fossil shallow-water shells of the bivalves Pinna and Atrina correlates with T as measured by the carbonate clumped isotope thermometer. Based on the observed TT vs. T correlation, we anticipate that TT will be used as a paleothermometer, useful to estimate paleotemperature in shallow-water paleoenvironments. Here we successfully test the proposed new nacre TT thermometer on two Jurassic Pinna shells. The increase of TT with T is consistent with greater aragonite growth rate at higher T, and with greater metabolic rate at higher T. Thus, it reveals a complex, T-dependent biophysical mechanism for nacre formation

    Assembled and translated transcriptomes

    No full text
    Assembled and translated transcriptomes of all the 109 species (ingroup + outgroup) used in the phylogenetic analyses. Assemblies were generated withTrinity r2014-04-13 and translations with TransDecoder 3.0.0

    Scripts

    No full text
    Python scripts to analyze dat
    corecore