5 research outputs found
Do children (and adults) benefit from a prediction error boost in one-shot word learning?
Influential theories and computational models suggest error-based learning plays an important role in language acquisition: Children learn new words by generating predictions about upcoming utterances and revising those predictions when they are erroneous. Critically, revising stronger (rather than weaker) predictions should further enhance learning. Although previously demonstrated in adults, such prediction error boost has not been conclusively shown in children. To close this gap, we tested 107 participants between the ages of 5 and 10. We found little evidence that word learning in this age group benefits from a prediction error boost. Moreover, we also failed to replicate previous evidence for such an effect in adults. Based on a detailed task analysis, we suggest the variation in adult findings may be partly explained by differences in encoding strategies and that, relatedly, the protracted development of the episodic memory system might explain why children do not experience robust benefits from having stronger (rather than weaker) predictions disconfirmed
Lexical access speed and the development of phonological recoding during immediate serial recall
A recent Registered Replication Report (RRR) of the development of verbal rehearsal during serial recall revealed that children verbalized at younger ages than previously thought, but did not identify sources of individual differences. Here, we use mediation analysis to reanalyze data from the 934 children ranging from 5 to 10 years old from the RRR for that purpose. From ages 5 to 7, the time taken for a child to label pictures (i.e. isolated naming speed) predicted the childâs spontaneous use of labels during a visually presented serial reconstruction task, despite no need for spoken responses. For 6- and 7-year-olds, isolated naming speed also predicted recall. The degree to which verbalization mediated the relation between isolated naming speed and recall changed across development. All relations dissipated by age 10. The same general pattern was observed in an exploratory analysis of delayed recall for which greater demands are placed on rehearsal for item maintenance. Overall, our findings suggest that spontaneous phonological recoding during a standard short-term memory task emerges around age 5, increases in efficiency during the early elementary school years, and is sufficiently automatic by age 10 to support immediate serial recall in most children. Moreover, the findings highlight the need to distinguish between phonological recoding and rehearsal in developmental studies of short-term memory
Lexical Access Speed and the Development of Phonological Recoding during Immediate Serial Recall
A recent Registered Replication Report (RRR) of the development of verbal rehearsal during serial recall (Elliott et al., 2021) revealed that children verbalized at younger ages than
previously thought (Flavell et al., 1966), but did not identify sources of individual differences.Here we use mediation analysis to reanalyze data from the 934 children ranging from 5 to 10 years old from the RRR for that purpose. From ages 5 to 7, the time taken for a child to label pictures (i.e. isolated naming speed) predicted the childâs spontaneous use of labels during a visually-presented serial reconstruction task, despite no need for spoken responses. For 6- and 7- year-olds, isolated naming speed also predicted recall. The degree to which verbalization mediated the relation between isolated naming speed and recall changed across development. All relations dissipated by age 10. The same general pattern was observed in an exploratory analysis of delayed recall for which greater demands are placed on rehearsal for item maintenance. Overall, our findings suggest that spontaneous phonological recoding during a standard short-term memory task emerges around age 5, increases in efficiency during the early elementary
school years, and is sufficiently automatic by age 10 to support immediate serial recall in most children. Moreover, the findings highlight the need to distinguish between phonological recoding
and rehearsal in developmental studies of short-term memory
Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age
Work by Flavell, Beach, and Chinsky indicated a change in the spontaneous production of overt verbalization behaviors when comparing young children (age 5) with older children (age 10). Despite the critical role that this evidence of a change in verbalization behaviors plays in modern theories of cognitive development and working memory, there has been only one other published near replication of this work. In this Registered Replication Report, we relied on researchers from 17 labs who contributed their results to a larger and more comprehensive sample of children. We assessed memory performance and the presence or absence of verbalization behaviors of young children at different ages and determined that the original pattern of findings was largely upheld: Older children were more likely to verbalize, and their memory spans improved. We confirmed that 5- and 6-year-old children who verbalized recalled more than children who did not verbalize. However, unlike Flavell et al., substantial proportions of our 5- and 6-year-old samples overtly verbalized at least sometimes during the picture memory task. In addition, continuous increase in overt verbalization from 7 to 10 years old was not consistently evident in our samples. These robust findings should be weighed when considering theories of cognitive development, particularly theories concerning when verbal rehearsal emerges and relations between speech and memory
Lexical Access Speed and the Development of Phonological Recoding during Immediate Serial Recall
A recent Registered Replication Report (RRR) of the development of verbal rehearsal during serial recall revealed that children verbalized at younger ages than previously thought, but did not identify sources of individual differences. Here, we use mediation analysis to reanalyze data from the 934 children ranging from 5 to 10 years old from the RRR for that purpose. From ages 5 to 7, the time taken for a child to label pictures (i.e. isolated naming speed) predicted the childâs spontaneous use of labels during a visually presented serial reconstruction task, despite no need for spoken responses. For 6- and 7-year-olds, isolated naming speed also predicted recall. The degree to which verbalization mediated the relation between isolated naming speed and recall changed across development. All relations dissipated by age 10. The same general pattern was observed in an exploratory analysis of delayed recall for which greater demands are placed on rehearsal for item maintenance. Overall, our findings suggest that spontaneous phonological recoding during a standard short-term memory task emerges around age 5, increases in efficiency during the early elementary school years, and is sufficiently automatic by age 10 to support immediate serial recall in most children. Moreover, the findings highlight the need to distinguish between phonological recoding and rehearsal in developmental studies of short-term memory