185 research outputs found

    Electron Refrigeration in the Tunneling Approach

    Full text link
    The qualities of electron refrigeration by means of tunnel junctions between superconducting and normal--metal electrodes are studied theoretically. A suitable approximation of the basic expression for the heat current across those tunnel junctions allows the investigation of several features of the device such as its optimal bias voltage, its maximal heat current, its optimal working point, and the maximally gained temperature reduction. Fortunately, the obtained results can be compared with those of a recent experiment.Comment: 4 pages, 4 Postscript figures, uses eps

    Effect of a thin AlO_x layer on transition-edge sensor properties

    Full text link
    We have studied the physics of transition-edge sensor (TES) devices with an insulating AlOx layer on top of the device to allow implementation of more complex detector geometries. By comparing devices with and without the insulating film, we have observed significant additional noise apparently caused by the insulator layer. In addition, AlOx was found to be a relatively good thermal conductor. This adds an unforeseen internal thermal feature to the system.Comment: 6 pages, 5 figures, Low Temperature Detectors 14 conferenc

    Dimensionality effects in restricted bosonic and fermionic systems

    Full text link
    The phenomenon of Bose-like condensation, the continuous change of the dimensionality of the particle distribution as a consequence of freezing out of one or more degrees of freedom in the low particle density limit, is investigated theoretically in the case of closed systems of massive bosons and fermions, described by general single-particle hamiltonians. This phenomenon is similar for both types of particles and, for some energy spectra, exhibits features specific to multiple-step Bose-Einstein condensation, for instance the appearance of maxima in the specific heat. In the case of fermions, as the particle density increases, another phenomenon is also observed. For certain types of single particle hamiltonians, the specific heat is approaching asymptotically a divergent behavior at zero temperature, as the Fermi energy ϵF\epsilon_{\rm F} is converging towards any value from an infinite discrete set of energies: ϵii1{\epsilon_i}_{i\ge 1}. If ϵF=ϵi\epsilon_{\rm F}=\epsilon_i, for any i, the specific heat is divergent at T=0 just in infinite systems, whereas for any finite system the specific heat approaches zero at low enough temperatures. The results are particularized for particles trapped inside parallelepipedic boxes and harmonic potentials. PACS numbers: 05.30.Ch, 64.90.+b, 05.30.Fk, 05.30.JpComment: 7 pages, 3 figures (included

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure

    Development of anti-immunocomplex specific antibodies and non-competitive time-resolved fluorescence immunoassay for the detection of estradiol

    Get PDF
    Detection of circulatory estradiol has widespread use in various clinical applications. Particularly, the use of estradiol-specific antibodies in immunoassays is routinely used, mainly due to the cost efficiency and simplicity of the sample handling process. However, the circulatory levels of estradiol can be extremely low in some conditions, and beyond the current detection limit of existing competitive immunoassays. We describe the generation of anti-immunocomplex specific antibodies derived from synthetic antibody repertoire and the development of high-performance non-competitive immunoassay for the detection of estradiol. Phage display selections were used to isolate new antibodies from synthetic antibody library with the use of existing estradiol specific Fab fragment. The found antibodies were consecutively used to set up a time-resolved fluorescence-based immunoassay (TRFIA), which can be used to detect estradiol with exceptional sensitivity and specificity. The limit of detection and EC50 were shown to be 3.0 pg mL−1 and 32.4 pg mL−1 respectively.</p

    Learning Impact of a Virtual Brain Electrical Activity Simulator Among Neurophysiology Students: Mixed-Methods Intervention Study

    Get PDF
    Background:Virtual simulation is the re-creation of reality depicted on a computer screen. It offers the possibility to exercise motor and psychomotor skills. In biomedical and medical education, there is an attempt to find new ways to support students’ learning in neurophysiology. Traditionally, recording electroencephalography (EEG) has been learned through practical hands-on exercises. To date, virtual simulations of EEG measurements have not been used.Objective:This study aimed to examine the development of students’ theoretical knowledge and practical skills in the EEG measurement when using a virtual EEG simulator in biomedical laboratory science in the context of a neurophysiology course.Methods:A computer-based EEG simulator was created. The simulator allowed virtual electrode placement and EEG graph interpretation. The usefulness of the simulator for learning EEG measurement was tested with 35 participants randomly divided into three equal groups. Group 1 (experimental group 1) used the simulator with fuzzy feedback, group 2 (experimental group 2) used the simulator with exact feedback, and group 3 (control group) did not use a simulator. The study comprised pre- and posttests on theoretical knowledge and practical hands-on evaluation of EEG electrode placement.Results:The Wilcoxon signed-rank test indicated that the two groups that utilized a computer-based electrode placement simulator showed significant improvement in both theoretical knowledge (Z=1.79, P=.074) and observed practical skills compared with the group that studied without a simulator.Conclusions:Learning electrode placement using a simulator enhances students’ ability to place electrodes and, in combination with practical hands-on training, increases their understanding of EEG measurement.</p

    Early stage minor salivary gland adenoid cystic carcinoma has favourable prognosis

    Get PDF
    The purpose of the study was to evaluate the long-term outcome of minor salivary and mucous gland (MiSG) adenoid cystic carcinoma (ACC) of the head and neck and to compare the results with earlier reports including our recently published series on major salivary gland (MaSG) ACC. The study comprised 68 MiSG ACCs operated during 1974-2012 at the Helsinki University Hospital, Helsinki, Finland. Medical records and histological samples were reviewed. Our previously published cohort comprising 54 MaSG ACCs during the years from 1974 to 2009 was used for comparison. The most common locations were the oral cavity and sinonasal cavities. Most patients presented stages IV (33.8%) and I (23.5%) disease. Primary treatment with curative intent, mainly surgery, was offered for 64 patients. Thirty-three (51.6%) of these patients developed a disease recurrence and 22 (66.7%) patients in less than 5 years. The difference in the length of recurrence-free time ( 5 years) had an impact on OS and DSS (p < 0.001) showing worse prognosis for the earlier recurring group. T classes 2-4 (p = 0.005, p < 0.001, and p = 0.001, respectively) and stages II-IV (p = 0.019, p < 0.001, and p = 0.002, respectively) were associated with worse OS, DSS, and DFS. MiSG ACC had a similar long-term survival compared to MaSG ACC. Patients with stage I MiSG ACC seem to carry a favourable prognosis compared with those with stages II, III, and IV tumours. It is thus noteworthy that stage II tumours represent a truly advanced disease entity warranting a more aggressive treatment approach

    Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров

    Get PDF
    У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume

    MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Get PDF
    AbstractComplex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.Abstract Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15

    Small oral tongue cancers (ae 4 cm in diameter) with clinically negative neck : from the 7th to the 8th edition of the American Joint Committee on Cancer

    Get PDF
    One of the main changes in the 8th edition of the American Joint Committee on Cancer (AJCC) for staging of oral cancer is the inclusion of depth of invasion (DOI) in the T category. However, cancers in different oral subsites have variable behavior, with oral tongue squamous cell carcinoma (OTSCC) being the most aggressive one even at early stage. Thus, it is necessary to evaluate the performance of this new T category in homogenous cohort of early OTSCC. Therefore, we analyzed a large cohort of patients with a small (ae4 cm) OTSCC to demonstrate the differences in T stage between the AJCC 7th and 8th editions. A total of 311 early-stage cases (AJCC 7th) of OTSCC were analyzed. We used 5 mm and 10 mm DOI for upstaging from T1 to T2 and from T2 to T3 respectively, as in the AJCC 8th. We further reclassified the cases according to our own proposal suggesting 2 mm to upstage to T2 and 4 mm to upstage to T3. According to AJCC 7th, there were no significant differences in the survival analysis. When we applied the 8th edition, many cases were upstaged to T3 and thus associated with worse disease-specific survival (HR 2.37, 95% CI 1.12-4.99) and disease-free survival (HR 2.12, 95% CI 1.09-4.08). Based on our proposal, T3 cases were associated with even worse disease-specific survival (HR 4.19, 95% CI 2.27-7.74). The 8th edition provides better survival prediction for OTSCC than the 7th and can be further optimized by lowering the DOI cutoffs.Peer reviewe
    corecore