3 research outputs found
MIDIS: JWST/MIRI Reveals the Stellar Structure of ALMA-selected Galaxies in the Hubble Ultra Deep Field at Cosmic Noon
We present deep James Webb Space Telescope (JWST)/Mid-Infrared Instrument (MIRI) F560W observations of a flux-limited, Atacama Large Millimeter/submillimeter Array (ALMA)-selected sample of 28 galaxies at z = 0.5–3.7 in the ). The data from the MIRI Deep Imaging Survey (MIDIS) reveal the stellar structure of the HUDF galaxies at rest-frame wavelengths of λ > 1 μm for the first time. We revise the stellar mass estimates using new JWST photometry and find good agreement with pre-JWST analyses; the few discrepancies can be explained by blending issues in the earlier lower-resolution Spitzer data. At z ∼ 2.5, the resolved rest-frame near-infrared (1.6 μm) structure of the galaxies is significantly more smooth and centrally concentrated than seen by the Hubble Space Telescope at rest-frame 450 nm (F160W), with effective radii of R e (F560W) = 1–5 kpc and Sérsic indices mostly close to an exponential (disk-like) profile (n ≈ 1), up to n ≈ 5 (excluding active galactic nuclei). We find an average size ratio of R e (F560W)/R e (F160W) ≈ 0.7 that decreases with stellar mass. The stellar structure of the ALMA-selected galaxies is indistinguishable from a HUDF reference sample of all galaxies with a MIRI flux density greater than 1 μJy. We supplement our analysis with custom-made, position-dependent, empirical point-spread function models for the F560W observations. The results imply that a smoother stellar structure is in place in massive gas-rich, star-forming galaxies at “Cosmic Noon,” despite a more clumpy rest-frame optical appearance, placing additional constraints on galaxy formation simulations. As a next step, matched-resolution, resolved ALMA observations will be crucial to further link the mass- and light-weighted galaxy structures to the dusty interstellar medium.</p
MIDIS: JWST NIRCam and MIRI Unveil the Stellar Population Properties of Lyα Emitters and Lyman-break Galaxies at z ≃ 3–7
We study the stellar population properties of 182 spectroscopically confirmed (MUSE/VLT) Lyα emitters (LAEs) and 450 photometrically selected Lyman-break galaxies (LBGs) at z = 2.8–6.7 in the Hubble Extreme Deep Field. Leveraging the combined power of Hubble Space Telescope and JWST NIRCam and MIRI observations, we analyze their rest-frame UV-through-near-IR spectral energy distributions, with MIRI playing a crucial role in robustly assessing the LAEs' stellar masses and ages. Our LAEs are low-mass objects
with little or no dust extinction (E(B − V) ≃ 0.1) and a blue UV continuum slope (β ≃ −2.2). While 75% of our LAEs are young (<100 Myr), the remaining 25% have significantly older stellar populations (≥100 Myr). These old LAEs are statistically more massive, less extinct, and have lower specific star formation rate than young LAEs. Besides, they populate the plane of M⋆ versus star formation rate along the main sequence of star-forming galaxies, while young LAEs populate the starburst region. The comparison between the LAEs' properties and those of a stellar-mass-matched sample of LBGs shows no statistical difference between these objects, except for the LBGs' redder UV continuum slope and marginally larger E(B − V) values. Interestingly, 48% of the LBGs have ages <10 Myr and are classified as starbursts, but lack detectable Lyα emission. This is likely due to H i resonant scattering and/or dust-selective extinction. Overall, we find that JWST observations are crucial in determining the properties of LAEs and shedding light on their comparison with LBGs.</p
MIDIS: JWST NIRCam and MIRI Unveil the Stellar Population Properties of Lyα Emitters and Lyman-break Galaxies at z ≃ 3–7
We study the stellar population properties of 182 spectroscopically confirmed (MUSE/VLT) Lyα emitters (LAEs) and 450 photometrically selected Lyman-break galaxies (LBGs) at z = 2.8–6.7 in the Hubble Extreme Deep Field. Leveraging the combined power of Hubble Space Telescope and JWST NIRCam and MIRI observations, we analyze their rest-frame UV-through-near-IR spectral energy distributions, with MIRI playing a crucial role in robustly assessing the LAEs' stellar masses and ages. Our LAEs are low-mass objects
with little or no dust extinction (E(B − V) ≃ 0.1) and a blue UV continuum slope (β ≃ −2.2). While 75% of our LAEs are young (<100 Myr), the remaining 25% have significantly older stellar populations (≥100 Myr). These old LAEs are statistically more massive, less extinct, and have lower specific star formation rate than young LAEs. Besides, they populate the plane of M⋆ versus star formation rate along the main sequence of star-forming galaxies, while young LAEs populate the starburst region. The comparison between the LAEs' properties and those of a stellar-mass-matched sample of LBGs shows no statistical difference between these objects, except for the LBGs' redder UV continuum slope and marginally larger E(B − V) values. Interestingly, 48% of the LBGs have ages <10 Myr and are classified as starbursts, but lack detectable Lyα emission. This is likely due to H i resonant scattering and/or dust-selective extinction. Overall, we find that JWST observations are crucial in determining the properties of LAEs and shedding light on their comparison with LBGs.</p