18 research outputs found

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study

    Get PDF
    Cross-sectional studies in dialysis demonstrate muscle wasting associated with loss of function, increased morbidity and mortality. The relative drivers are poorly understood. There is a paucity of data regarding interval change in muscle in pre-dialysis and dialysis-dependant patients. This study aimed to examine muscle and fat mass change and elucidate associations with muscle wasting in advanced CKD. 134 patients were studied (60 HD, 28 PD, 46 CKD 4–5) and followed up for two years. Groups were similar in age, sex and diabetes prevalence. Soft tissue cross-sectional area (CSA) was measured annually on 3 occasions by a standardised multi-slice CT thigh. Potential determinants of muscle and fat CSA were assessed. Functional ability was assessed by sit-to-stand testing. 88 patients completed follow-up (40 HD, 16 PD, 32 CKD). There was a significant difference in percentage change in muscle CSA (MCSA) over year 1, dependant on treatment modality (χ2 = 6.46; p = 0.039). Muscle loss was most pronounced in pre-dialysis patients. Muscle loss during year 1 was partially reversed in year 2 in 39%. Incident dialysis patients significantly lost MCSA during the year which they commenced dialysis, but not the subsequent year. Baseline MCSA, change in MCSA during year 1 and dialysis modality predicted year 2 change in MCSA (adjusted R2 = 0.77, p<0.001). There was no correlation between muscle or fat CSA change and any other factors. MCSA correlated with functional testing, although MCSA change correlated poorly with change in functional ability. These data demonstrate marked variability in MCSA over 2 years. Loss of MCSA in both pre-dialysis and established dialysis patients is reversible. Factors previously cross-sectionally shown to correlate with MCSA did not correlate with wasting progression. The higher rate of muscle loss in undialysed CKD patients, and its reversal after dialysis commencement, suggests that conventional indicators may not result in optimal timing of dialysis initiation

    Single frequency electrochemical impedance investigation of zero charge potential for different surface states of Cu–Ni alloys

    No full text
    cited By 5International audienceAdsorption of sulphate anions onto polycrystalline pure copper, pure nickel and two copper-nickel alloys was explored by performing zero charge potential E PZC measurements. E PZC measurements were performed by differential capacitance analysis using single-frequency electrochemical impedance spectroscopy. E PZC and surface charge of the studied materials were analysed for different surface states: bare - immediately after cathodic polarisation and after 5 h of immersion in a 0.1 M Na 2SO4 solution. According to the surface state and nature of the studied materials, the choice of the appropriate measuring frequency was investigated. Specific methodologies dedicated to the study of electrode/electrolyte interfaces are then presented for bare metal, metals covered by corrosion products and metals covered by passive film. In the presence of passive film, the space charge capacitance interferes with the differential capacitance measurements, and its influence is discussed in the framework of semiconductor electrochemistry. © 2013 Springer Science+Business Media Dordrecht

    Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study

    No full text
    <p>Abstract</p> <p>Background</p> <p>Erythropoietin (EPO) is known to improve exercise performance by increasing oxygen blood transport and thus inducing a higher maximum oxygen uptake (VO<sub>2max</sub>). Furthermore, treatment with (or overexpression of) EPO induces protective effects in several tissues, including the myocardium. However, it is not known whether EPO exerts this protective effect when present at physiological levels. Given that EPO receptors have been identified in skeletal muscle, we hypothesized that EPO may have a direct, protective effect on this tissue. Thus, the objectives of the present study were to confirm a decrease in exercise performance and highlight muscle transcriptome alterations in a murine EPO functional knock-out model (the EPO-d mouse).</p> <p>Methods</p> <p>We determined VO<sub>2max</sub> peak velocity and critical speed in exhaustive runs in 17 mice (9 EPO-d animals and 8 inbred controls), using treadmill enclosed in a metabolic chamber. Mice were sacrificed 24h after a last exhaustive treadmill exercise at critical speed. The tibialis anterior and soleus muscles were removed and total RNA was extracted for microarray gene expression analysis.</p> <p>Results</p> <p>The EPO-d mice’s hematocrit was about 50% lower than that of controls (p < 0.05) and their performance level was about 25% lower (p < 0.001). A total of 1583 genes exhibited significant changes in their expression levels. However, 68 genes were strongly up-regulated (normalized ratio > 1.4) and 115 were strongly down-regulated (normalized ratio < 0.80). The transcriptome data mining analysis showed that the exercise in the EPO-d mice induced muscle hypoxia, oxidative stress and proteolysis associated with energy pathway disruptions in glycolysis and mitochondrial oxidative phosphorylation.</p> <p>Conclusions</p> <p>Our results showed that the lack of functional EPO induced a decrease in the aerobic exercise capacity. This decrease was correlated with the hematocrit and reflecting poor oxygen supply to the muscles. The observed alterations in the muscle transcriptome suggest that physiological concentrations of EPO exert both direct and indirect muscle-protecting effects during exercise. However, the signaling pathway involved in these protective effects remains to be described in detail.</p

    Electrochemical Relaxation Techniques

    No full text

    Odanacatib for the treatment of postmenopausal osteoporosis. results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT extension study

    No full text
    Background: Odanacatib, a cathepsin K inhibitor, reduces bone resorption while maintaining bone formation. Previous work has shown that odanacatib increases bone mineral density in postmenopausal women with low bone mass. We aimed to investigate the efficacy and safety of odanacatib to reduce fracture risk in postmenopausal women with osteoporosis. Methods: The Long-term Odanacatib Fracture Trial (LOFT) was a multicentre, randomised, double-blind, placebo-controlled, event-driven study at 388 outpatient clinics in 40 countries. Eligible participants were women aged at least 65 years who were postmenopausal for 5 years or more, with a femoral neck or total hip bone mineral density T-score between −2·5 and −4·0 if no previous radiographic vertebral fracture, or between −1·5 and −4·0 with a previous vertebral fracture. Women with a previous hip fracture, more than one vertebral fracture, or a T-score of less than −4·0 at the total hip or femoral neck were not eligible unless they were unable or unwilling to use approved osteoporosis treatment. Participants were randomly assigned (1:1) to either oral odanacatib (50 mg once per week) or matching placebo. Randomisation was done using an interactive voice recognition system after stratification for previous radiographic vertebral fracture, and treatment was masked to study participants, investigators and their staff, and sponsor personnel. If the study completed before 5 years of double-blind treatment, consenting participants could enrol in a double-blind extension study (LOFT Extension), continuing their original treatment assignment for up to 5 years from randomisation. Primary endpoints were incidence of vertebral fractures as assessed using radiographs collected at baseline, 6 and 12 months, yearly, and at final study visit in participants for whom evaluable radiograph images were available at baseline and at least one other timepoint, and hip and non-vertebral fractures adjudicated as being a result of osteoporosis as assessed by clinical history and radiograph. Safety was assessed in participants who received at least one dose of study drug. The adjudicated cardiovascular safety endpoints were a composite of cardiovascular death, myocardial infarction, or stroke, and new-onset atrial fibrillation or flutter. Individual cardiovascular endpoints and death were also assessed. LOFT and LOFT Extension are registered with ClinicalTrials.gov (number NCT00529373) and the European Clinical Trials Database (EudraCT number 2007-002693-66). Findings: Between Sept 14, 2007, and Nov 17, 2009, we randomly assigned 16 071 evaluable patients to treatment: 8043 to odanacatib and 8028 to placebo. After a median follow-up of 36·5 months (IQR 34·43–40·15) 4297 women assigned to odanacatib and 3960 assigned to placebo enrolled in LOFT Extension (total median follow-up 47·6 months, IQR 35·45–60·06). In LOFT, cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 3·7% (251/6770) versus 7·8% (542/6910), hazard ratio (HR) 0·46, 95% CI 0·40–0·53; hip fractures 0·8% (65/8043) versus 1·6% (125/8028), 0·53, 0·39–0·71; non-vertebral fractures 5·1% (412/8043) versus 6·7% (541/8028), 0·77, 0·68–0·87; all p&lt;0·0001. Combined results from LOFT plus LOFT Extension for cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 4·9% (341/6909) versus 9·6% (675/7011), HR 0·48, 95% CI 0·42–0·55; hip fractures 1·1% (86/8043) versus 2·0% (162/8028), 0·52, 0·40–0·67; non-vertebral fractures 6·4% (512/8043) versus 8·4% (675/8028), 0·74, 0·66–0·83; all p&lt;0·0001. In LOFT, the composite cardiovascular endpoint of cardiovascular death, myocardial infarction, or stroke occurred in 273 (3·4%) of 8043 patients in the odanacatib group versus 245 (3·1%) of 8028 in the placebo group (HR 1·12, 95% CI 0·95–1·34; p=0·18). New-onset atrial fibrillation or flutter occurred in 112 (1·4%) of 8043 patients in the odanacatib group versus 96 (1·2%) of 8028 in the placebo group (HR 1·18, 0·90–1·55; p=0·24). Odanacatib was associated with an increased risk of stroke (1·7% [136/8043] vs 1·3% [104/8028], HR 1·32, 1·02–1·70; p=0·034), but not myocardial infarction (0·7% [60/8043] vs 0·9% [74/8028], HR 0·82, 0·58–1·15; p=0·26). The HR for all-cause mortality was 1·13 (5·0% [401/8043] vs 4·4% [356/8028], 0·98–1·30; p=0·10). When data from LOFT Extension were included, the composite of cardiovascular death, myocardial infarction, or stroke occurred in significantly more patients in the odanacatib group than in the placebo group (401 [5·0%] of 8043 vs 343 [4·3%] of 8028, HR 1·17, 1·02–1·36; p=0·029, as did stroke (2·3% [187/8043] vs 1·7% [137/8028], HR 1·37, 1·10–1·71; p=0·0051). Interpretation: Odanacatib reduced the risk of fracture, but was associated with an increased risk of cardiovascular events, specifically stroke, in postmenopausal women with osteoporosis. Based on the overall balance between benefit and risk, the study's sponsor decided that they would no longer pursue development of odanacatib for treatment of osteoporosis. Funding: Merck Sharp &amp; Dohme Corp, a subsidiary of Merck &amp; Co, Inc, Kenilworth, NJ, USA
    corecore