8 research outputs found

    Tethering Cells via Enzymatic Oxidative Crosslinking Enables Mechanotransduction in Non-Cell-Adhesive Materials

    Get PDF
    Cell–matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell–material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell–material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat

    An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation

    Get PDF
    To characterize molecular changes during cell type transitions, the authors develop a method to simultaneously measure protein expression and thermal stability changes. They apply this approach to study differences between human pluripotent stem cells, their progenies, parental and allogeneic cells. Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro

    Histidine phosphorylation in human cells; a needle or phantom in the haystack?

    No full text
    It has been suggested that in mammalian cells histidine residues in proteins may become as frequently phosphorylated as serine, threonine and tyrosine, and may play a key role in mammalian signaling. Here we applied a robust workflow that earlier allowed us to detect histidine phosphorylation in bacteria unambiguously, to probe for histidine phosphorylation in four human cell lines. Initially, seemingly hundreds of protein histidine phosphorylations were picked up in all studied human cell lines. However, careful examination of the data, and several control experiments, led us to the conclusion that >99% of these initially assigned pHis sites were not genuine, and should be site localized to neighboring Ser/Thr residues. Nevertheless, our methods are selective enough to detect just a handful of genuine pHis sites in mammalian cells, representing well-known enzymatic intermediates. Consequently, we do not find any evidence in our data supporting that protein histidine phosphorylation plays a role in mammalian signaling

    Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism

    Get PDF
    Thermal proteome profiling (TPP) allows for the unbiased detection of drug-target protein engagements in vivo. Traditionally, 1 cell type is used for TPP studies, with the risk of missing important differentially expressed target proteins. The use of whole organisms would circumvent this problem. Zebrafish embryos are amenable to such an approach. Here, we used TPP on whole zebrafish embryo lysate to identify protein targets of napabucasin, a compound that may affect signal transducer and activator of transcription 3 (Stat3) signaling through an ill-understood mechanism. In zebrafish embryos, napabucasin induced developmental defects consistent with inhibition of Stat3 signaling. TPP profiling showed no distinct shift in Stat3 upon napabucasin treatment, but effects were detected on the oxidoreductase, Pora, which might explain effects on Stat3 signaling. Interestingly, thermal stability of several aldehyde dehydrogenases was affected. Moreover, napabucasin activated aldehyde dehydrogenase enzymatic activity in vitro. Aldehyde dehydrogenases have crucial roles in retinoic acid metabolism, and functionally, we validated napabucasin-mediated activation of the retinoic acid pathway in zebrafish in vivo. We conclude that TPP profiling in whole zebrafish embryo lysate is feasible and facilitates direct correlation of in vivo effects of small molecule drugs with their protein targets

    Optimizing charge state distribution is a prerequisite for accurate protein biomarker quantification with LC-MS/MS, as illustrated by hepcidin measurement

    No full text
    Targeted quantification of protein biomarkers with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has great potential, but is still in its infancy. Therefore, we elucidated the influence of charge state distribution and matrix effects on accurate quantification, illustrated by the peptide hormone hepcidin. An LC-MS/MS assay for hepcidin, developed based on existing literature, was improved by using 5 mM ammonium formate buffer as mobile phase A and as an elution solution for solid phase extraction (SPE) to optimize the charge state distribution. After extensive analytical validation, focusing on interference and matrix effects, the clinical consequence of this method adjustment was studied by performing receiving operating characteristic (ROC)-curve analysis in patients with iron deficiency anemia (IDA, n=44), anemia of chronic disease (ACD, n=42) and non-anemic patients (n=93). By using a buffered solution during sample preparation and chromatography, the most abundant charge state was shifted from 4+ to 3+ and the charge state distribution was strongly stabilized. The matrix effects which occurred in the 4+ state were therefore avoided, eliminating bias in the low concentration range of hepcidin. Consequently, sensitivity, specificity and positive predictive value (PPV) for detection of IDA patients with the optimized assay (96%, 97%, 91%, respectively) were much better than for the original assay (73%, 70%, 44%, respectively). Fundamental improvements in LC-MS/MS assays greatly impact the accuracy of protein quantification. This is urgently required for improved diagnostic accuracy and clinical value, as illustrated by the validation of our hepcidin assay

    A prioritization strategy for functional alternatives to bisphenol A in food contact materials

    No full text
    The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM

    Histidine phosphorylation in human cells; a needle or phantom in the haystack?

    No full text
    It has been suggested that in mammalian cells histidine residues in proteins may become as frequently phosphorylated as serine, threonine and tyrosine, and may play a key role in mammalian signaling. Here we applied a robust workflow that earlier allowed us to detect histidine phosphorylation in bacteria unambiguously, to probe for histidine phosphorylation in four human cell lines. Initially, seemingly hundreds of protein histidine phosphorylations were picked up in all studied human cell lines. However, careful examination of the data, and several control experiments, led us to the conclusion that >99% of these initially assigned pHis sites were not genuine, and should be site localized to neighboring Ser/Thr residues. Nevertheless, our methods are selective enough to detect just a handful of genuine pHis sites in mammalian cells, representing well-known enzymatic intermediates. Consequently, we do not find any evidence in our data supporting that protein histidine phosphorylation plays a role in mammalian signaling

    Thermal Proteome Profiling in Zebrafish Reveals Effects of Napabucasin on Retinoic Acid Metabolism

    No full text
    Thermal proteome profiling (TPP) allows for the unbiased detection of drug-target protein engagements in vivo. Traditionally, 1 cell type is used for TPP studies, with the risk of missing important differentially expressed target proteins. The use of whole organisms would circumvent this problem. Zebrafish embryos are amenable to such an approach. Here, we used TPP on whole zebrafish embryo lysate to identify protein targets of napabucasin, a compound that may affect signal transducer and activator of transcription 3 (Stat3) signaling through an ill-understood mechanism. In zebrafish embryos, napabucasin induced developmental defects consistent with inhibition of Stat3 signaling. TPP profiling showed no distinct shift in Stat3 upon napabucasin treatment, but effects were detected on the oxidoreductase, Pora, which might explain effects on Stat3 signaling. Interestingly, thermal stability of several aldehyde dehydrogenases was affected. Moreover, napabucasin activated aldehyde dehydrogenase enzymatic activity in vitro. Aldehyde dehydrogenases have crucial roles in retinoic acid metabolism, and functionally, we validated napabucasin-mediated activation of the retinoic acid pathway in zebrafish in vivo. We conclude that TPP profiling in whole zebrafish embryo lysate is feasible and facilitates direct correlation of in vivo effects of small molecule drugs with their protein targets
    corecore