27 research outputs found

    Information Warfare and New Organizational Landscapes: An Inquiry into the ExxonMobil–Greenpeace Dispute over Climate Change

    Get PDF
    A defining characteristic of the emergence of new organizational landscapes is that information is not just being used as a tool by organizations, as it is more usually understood, but also as a weapon in a ?war of position?. As organizations seek to influence public perception over such emotive issues as climate change, conflict at the ideation level can give rise to information warfare campaigns. In this article, we analyse the ways in which ExxonMobil and Greenpeace employ distinctive informational tactics against a range of diverse targets in their dispute over the climate change debate. The purpose of this article is to advance the neo-Gramscian perspective on social movement organizations as a framework for understanding such behaviour. We argue that information warfare is likely to become common as corporations and non-governmental organizations are increasingly sensitive to their informational environment as a source of both opportunity and possible conflict

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Spinal Cord Window Chamber Model for <i>In Vivo</i> Longitudinal Multimodal Optical and Acoustic Imaging in a Murine Model

    Get PDF
    <div><p><i>In vivo</i> and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal <i>in vivo</i> imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for <i>ex vivo</i> tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature <i>in situ</i>. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) <i>in vivo</i>. <i>In vivo</i> power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous <i>in vivo</i> imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical <i>in vivo</i> spinal cord research.</p></div

    SCWC model permits X-ray microirradiation of the spinal cord <i>in situ</i>.

    No full text
    <p>(A) Anaesthetized mice were placed directly under the micro-irradiation collimator of the small animal irradiator for delivery of X-rays to the spinal cord through the coverglass of the window chamber. (B, C) <i>In situ</i> fluoroscopic imaging was used for image-guided delivery of the X-ray beam (centered on the crosshairs) to the spinal cord. (D) Custom fit radiochromic film was used to confirm the location of the irradiation beam which had a 3 mm diameter (as seen by the dark blue circle). Scale bar = 1 cm. SCWC = spinal cord window chamber.</p

    Intravital multispectral fluorescence microscopic imaging of medulloblastoma tumor metastasis to the spinal cord.

    No full text
    <p>(A) <i>In vivo</i> bioluminescence images of mice 7 days following intracranial tumor implantation of human WW426 medulloblastoma tumor cells, demonstrating local tumor growth. (B) SCWC was implanted 27 days after tumor implantation, when metastatic GFP+ tumor cells to the spinal cord could be seen using both BLI and intravital two-photon images (color bar indicates bioluminescence signal intensity; BLI units are photons/s/cm<sup>2</sup>/Sr). The head of the mouse was covered in “B” to reduce the bioluminescence signal from the brain in order to detect lower bioluminescence from the tumor micrometastases. (C) Wide-field fluorescence imaging and (D) confocal fluorescence microscopy of the SCWC-bearing mouse 28 days after initial tumor implantation (1 day post-SCWC installation). The outline of the spinal cord is highlighted with the orange dotted line in “C”. TRITC-dextran shows the posterior spinal cord vein. The arrows in “C” and “D” indicate the location of multiple tumor micrometastases in close proximity to the spinal cord vasculature. Scale bars = 1 mm. SCWC = spinal cord window chamber. BLI = bioluminescence imaging.</p

    Hemoglobin oxygen saturation (sO<sub>2</sub>) measurement made using <i>in vivo</i> photoacoustic imaging.

    No full text
    <p>Baseline vascular sO<sub>2</sub> was measured <i>in situ</i> for 1 minute while the animal breathed 100% oxygen mixed with 2% isoflurane. The animal was shifted to breathing 7% oxygen mixed with 2% isoflurane for an additional 1 minute. The oxygen concentration was then returned to 100%.</p

    Longitudinal optical imaging of radiation response of the normal spinal cord and its vasculature through the SCWC.

    No full text
    <p>White light, wide-field fluorescence, and svOCT images were taken at (A) 1 day before, (B) 1 hour, (C) 24 hours, and (D) 48 hours following a single 30 Gy radiation dose to the cord. White light images revealed significant radiation-induced hematoma in the spinal cord two days after irradiation (arrows). FITC-dextran was injected intravenously prior to acquiring the fluorescence images at each time point. Fiducial markers consisting of India ink (black dots shown by arrows) on the white light images were used to as spatial landmarks to allow identification and long-term imaging of vascular structures. Compared with vascular function, corresponding en-face projected svOCT images revealed that the posterior spinal cord vein and other vasculature did not suffer significant short-term radiation-induced structural damage. Scale bar = 1 mm. SCWC = spinal cord window chamber. svOCT = speckle variance optical coherence tomography.</p

    Visual and histological confirmation that SCWC implantation does not damage the spinal cord structure or cause significant inflammation or infection.

    No full text
    <p>(A) White light images following SCWC implantation at 0, 1, 3 and 7 days showed no signs of local infection, excessive bleeding around the installation site, or device rejection. SCWC remained optically clear for 29 days, permitting long-term high-resolution imaging of cord and vascular structures. Yellow arrows indicate the location of the spinal cord. (B–E) Histological analysis and quantification of spinal cord tissue cross-sections cut directly below the caudal edge of the implanted SCWC. (B) H&E staining confirmed tissue morphology was intact after WC implantation. (C) Representative Iba-1 immunohistochemistry images from spinal cords 24, 48 and 72 hours following SCWC implantation. Sham and spinal cord injury (SCI) (Iba-1 positive control) animals are also shown for comparison. SCI positive control animals showed a significant increase in Iba-1 expression, * p<0.001. No notable changes in Iba-1 expression in <i>ex vivo</i> spinal cord were observed between the SCWC implanted groups). (D) Western blot for Iba-1 prior to SCWC implant (sham), and at 24, 48, and 72 hours post-implantation in athymic nude mice. (E) Bar graph representing the fluorescent intensity quantification of Iba-1, and no significant increase in Iba-1 was observed; n = 3 per group (p-values >0.212 for comparisons between all groups). (F) Bar graph showing quantification of Western blot data. Increases in Iba-1 protein were observed in animals receiving SCWC implantation, although these increases were insignificant (p = 0.15); n = 3 per group. (G) Western blot for Iba-1 prior to SCWC implant (sham) (n = 3), and at 24 hours (n = 4), 3 days (n = 3), 10 days (n = 3) and 28 days (n = 3) post-implantation in C57BL6 mice. (H) Bar graph showing quantification of Western blot Iba-1 data (C57BL6 mice). No significant increases in Iba-1 protein were observed (p = 0.405). It is anticipated that the slight increases in Iba-1 in the athymic nude mice may be due to the laminectomy and surgical procedures performed. β-Actin was used as a protein loading control. Scale bars = 400 µm. Data was transformed (square-root transformation) and analyzed using a one-way ANOVA; Tukey post-hoc analysis. SCWC = spinal cord window chamber.</p

    Mouse spinal cord window chamber (SCWC) device and surgical implantation procedures.

    No full text
    <p>(A) The SCWC device design and dimensions are shown. An 8 mm diameter glass coverslip was inserted into the SCWC device and held in place by a metal ring clamp once the device is surgically implanted into the mouse (shown in panel “F” and “G”). Four radial extension arms have been built into the device in order to immobilize the animal during imaging sessions. (B-E) Photographs showing <i>step-by-step</i> surgical procedures for implanting the SCWC in the mouse exposing the spinal cord at the L2–L3 vertebrae. (E) Artificial dura was placed on the dorsal surface of exposed spinal cord below the coverslip to prevent scar tissue formation. Two separate devices were manufactured from either durable (F) polycarbonate or (G) light-weight surgical steel. Polycarbonate was used to allow photoacoustic imaging <i>in vivo</i>. (H) X-ray images were taken following SCWC implantation to confirm the device had been placed over L2–L3 and demonstrate that the spinal cord and vertebrae remain structurally sound after implantation of the device. Scale bars = 1 cm.</p
    corecore