17 research outputs found

    Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi

    Get PDF
    Microplastics (MPs) are ubiquitously found in terrestrial ecosystems and are increasingly recognized as a factor of global change (GCF). Current research shows that MP can alter plant growth, soil inherent properties, and the composition and activity of microbial communities. However, knowledge about how microplastic affects arbuscular mycorrhizal fungi (AMF) is scarce. For plants it has been shown that microplastic can both increase and decrease the aboveground biomass and reduce the root diameter, which could indirectly cause a change in AMF abundance and activity. One of the main direct effects of microplastic is the reduction of the soil bulk density, which translates to an altered soil pore structure and water transport. Moreover, especially fibers can have considerable impacts on soil structure, namely the size distribution and stability of soil aggregates. Therefore, microplastic alters a number of soil parameters that determine habitat space and conditions for AMF. We expect that this will influence functions mediated by AMF, such as soil aggregation, water and nutrient transport. We discuss how the impacts of microplastic on AMF could alter how plants deal with other GCFs in the context of sustainable food production. The co-occurrence of several GCFs, e.g., elevated temperature, drought, pesticides, and microplastic could modify the impact of microplastic on AMF. Furthermore, the ubiquitous presence of microplastic also relates to earth system processes, e.g., net primary production (NPP), carbon and nitrogen cycling, which involve AMF as key soil organisms. For future research, we outline which experiments should be prioritized

    Microplastics have shape- and polymer-dependent effects on soil aggregation and organic matter loss – an experimental and meta-analytical approach

    Get PDF
    Microplastics are a diverse and ubiquitous contaminant, a global change driver with potential to alter ecosystem properties and processes. Microplastic-induced effects in soils are manifold as microplastics differ in a variety of properties among which the shape is of special interest. Our knowledge is limited regarding the impact of various microplastic shapes on soil processes. Therefore, we conducted this two-part research comprising a meta-analysis on published literature and a lab experiment focusing on microplastic shapes- and polymer-induced effects on soil aggregation and organic matter decomposition. We here focus on fibers, films, foams and particles as microplastic shapes. In the meta-analysis, we found a strong research focus on fibrous and particulate microplastic materials, with films and foams neglected. Our experiment showed that microplastic shapes are important modulators of responses in soil aggregation and organic matter decomposition. Fibers, irrespective of their chemistry, negatively affected the formation of aggregates. However, for other shapes like foams and particles, the polymer identity is an important factor co-modulating the soil responses. Further research is needed to generate a data-driven foundation to permit a better mechanistic understanding of the importance and consequences of microplastics added to soils

    Effects of Microplastic Fibers on Soil Aggregation and Enzyme Activities Are Organic Matter Dependent

    Get PDF
    Microplastic as an anthropogenic pollutant accumulates in terrestrial ecosystems over time, threatening soil quality and health, for example by decreasing aggregate stability. Organic matter addition is an efficient approach to promote aggregate stability, yet little is known about whether microplastic can reduce the beneficial effect of organic matter on aggregate stability. We investigated the impacts of microplastic fibers in the presence or absence of different organic materials by carrying out a soil incubation experiment. This experiment was set up as a fully factorial design containing all combinations of microplastic fibers (no microplastic fiber addition, two different types of polyester fibers, and polyacrylic) and organic matter (no organic matter addition, Medicago lupulina leaves, Plantago lanceolata leaves, wheat straw, and hemp stems). We evaluated the percentage of water-stable aggregates (WSA) and activities of four soil enzymes (β-glucosidase, β-D-celluliosidase, N-acetyl-b-glucosaminidase, phosphatase). Organic matter addition increased WSA and enzyme activities, as expected. In particular, Plantago or wheat straw addition increased WSA and enzyme activities by 224.77 or 281.65% and 298.51 or 55.45%, respectively. Microplastic fibers had no effect on WSA and enzyme activities in the soil without organic matter addition, but decreased WSA and enzyme activities by 26.20 or 37.57% and 23.85 or 26.11%, respectively, in the presence of Plantago or wheat straw. Our study shows that the effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. A possible reason is that Plantago and wheat straw addition stimulated soil aggregation to a greater degree, resulting in more newly formed aggregates containing microplastic, the incorporated microplastic fibers led to less stable aggregates, and decrease in enzyme activities This highlights an important aspect of the context dependency of microplastic effects in soil and on soil health. Our results also suggest risks for soil stability associated with organic matter additions, such as is common in agroecosystems, when microplastics are present

    a solution right under our feet?

    Get PDF
    With growing populations and climate change, assuring food and nutrition security is an increasingly challenging task. Climate smart and sustainable agriculture, that is, conceiving agriculture to be resistant and resilient to a changing climate while keeping it viable in the long term, is probably the best solution. The role of soil biota and particularly arbuscular mycorrhizal (AM) fungi in this new agriculture is believed to be of paramount importance. However, the large nutrient pools and the microbiota of subsoils are rarely considered in the equation. Here we explore the potential contributions of subsoil AM fungi to this agriculture and suggest future research goals that would allow us to maximize their benefits

    Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet?

    Get PDF
    With growing populations and climate change, assuring food and nutrition security is an increasingly challenging task. Climate-smart and sustainable agriculture, that is, conceiving agriculture to be resistant and resilient to a changing climate while keeping it viable in the long term, is probably the best solution. The role of soil biota and particularly arbuscular mycorrhizal (AM) fungi in this new agriculture is believed to be of paramount importance. However, the large nutrient pools and the microbiota of subsoils are rarely considered in the equation. Here we explore the potential contributions of subsoil AM fungi to a reduced and more efficient fertilization, carbon sequestration, and reduction of greenhouse gas emissions in agriculture. We discuss the use of crop rotations and cover cropping with deep rooting mycorrhizal plants, and low-disturbance management, as means of fostering subsoil AM communities. Finally, we suggest future research goals that would allow us to maximize these benefits

    Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling

    Get PDF
    Tire particles (TPs) are a major source of microplastic on land, and considering their chemical composition, they represent a potential hazard for the terrestrial environment. We studied the effects of TPs at environmentally relevant concentrations along a wide concentration gradient (0–160 mg g−1) and tested the effects on plant growth, soil pH and the key ecosystem process of litter decomposition and soil respiration. The addition of TPs negatively affected shoot and root growth already at low concentrations. Tea litter decomposition slightly increased with lower additions of TPs but decreased later on. Soil pH increased until a TP concentration of 80 mg g−1 and leveled off afterwards. Soil respiration clearly increased with increasing concentration of added TPs. Plant growth was likely reduced with starting contamination and stopped when contamination reached a certain level in the soil. The presence of TPs altered a number of biogeochemical soil parameters that can have further effects on plant performance. Considering the quantities of yearly produced TPs, their persistence, and toxic potential, we assume that these particles will eventually have a significant impact on terrestrial ecosystems

    Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi

    Get PDF
    Microplastics are increasingly recognized as a factor of global change. By altering soil inherent properties and processes, ripple-on effects on plants and their symbionts can be expected. Additionally, interactions with other factors of global change, such as drought, can influence the effect of microplastics. We designed a greenhouse study to examine effects of polyester microfibers, arbuscular mycorrhizal (AM) fungi and drought on plant, microbial and soil responses. We found that polyester microfibers increased the aboveground biomass of Allium cepa under well-watered and drought conditions, but under drought conditions the AM fungal-only treatment reached the highest biomass. Colonization with AM fungi increased under microfiber contamination, however, plant biomass did not increase when both AM fungi and fibers were present. The mean weight diameter of soil aggregates increased with AM fungal inoculation overall but decreased when the system was contaminated with microfibers or drought stressed. Our study adds additional support to the mounting evidence that microplastic fibers in soil can affect the plant-soil system by promoting plant growth, and favoring key root symbionts, AM fungi. Although soil aggregation is usually positively influenced by plant roots and AM fungi, and microplastic promotes both, our results show that plastic still had a negative effect on soil aggregates. Even though there are concerns that microplastic might interact with other factors of global change, our study revealed no such effect for drought

    Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet?

    Get PDF
    With growing populations and climate change, assuring food and nutrition security is an increasingly challenging task. Climate-smart and sustainable agriculture, that is, conceiving agriculture to be resistant and resilient to a changing climate while keeping it viable in the long term, is probably the best solution. The role of soil biota and particularly arbuscular mycorrhizal (AM) fungi in this new agriculture is believed to be of paramount importance. However, the large nutrient pools and the microbiota of subsoils are rarely considered in the equation. Here we explore the potential contributions of subsoil AM fungi to a reduced and more efficient fertilization, carbon sequestration, and reduction of greenhouse gas emissions in agriculture. We discuss the use of crop rotations and cover cropping with deep rooting mycorrhizal plants, and low-disturbance management, as means of fostering subsoil AM communities. Finally, we suggest future research goals that would allow us to maximize these benefits

    Effects of microplastics on crop nutrition in fertile soils and interaction with arbuscular mycorrhizal fungi

    Get PDF
    Introduction Soil microplastic (MP) pollution has emerged as a main factor of global change, but its effects on soil nutrient availability and uptake by crops (macro and micronutrients) are largely unknown. Arbuscular mycorrhizal fungi (AMF) are regulators of nutrient availability and uptake and can interact with soil MP. Materials and Methods Building on previous studies, here we explored in a 50-days pot experiment the influence and interaction of MP fibres (0.4%) and commercial AMF in soil and onion chemistry, that is, in elemental composition of onion shoots and soils (C, N, Ca, Mg, K, P, S, Cu, Fe, Mn and Zn) and micronutrient soil availability (Cu, Fe, Mn and Zn). Results MP had detrimental effects on K, Mg and S, but increased the soil availability of Zn and shoot uptake. AMF inoculation buffered the effects of MP by balancing/enhancing nutrient availability and plant uptake. Particularly, the commercial AMF inoculum remarkably enhanced Mn uptake by onion. Conclusion Our results support the use of AMF to sustainably manage agricultural ecosystems contaminated with MP, buffering and counteracting the effects of MP by balancing nutrient availability and plant uptake

    Fungal traits help to understand the decomposition of simple and complex plant litter

    Get PDF
    Litter decomposition is a key ecosystem process, relevant for the release and storage of nutrients and carbon in soil. Soil fungi are one of the dominant drivers of organic matter decomposition, but fungal taxa differ substantially in their functional ability to decompose plant litter. Knowledge is mostly based on observational data and subsequent molecular analyses and in vitro studies have been limited to forest ecosystems. In order to better understand functional traits of saprotrophic soil fungi in grassland ecosystems, we isolated 31 fungi from a natural grassland and performed several in vitro studies testing for i) leaf and wood litter decomposition, ii) the ability to use carbon sources of differing complexity, iii) the enzyme repertoire. Decomposition strongly varied among phyla and isolates, with Ascomycota decomposing the most and Mucoromycota decomposing the least. The phylogeny of the fungi and their ability to use complex carbon were the most important predictors for decomposition. Our findings show that it is crucial to understand the role of individual members and functional groups within the microbial community. This is an important way forward to understand the role of microbial community composition for the prediction of litter decomposition and subsequent potential carbon storage in grassland soils
    corecore