38 research outputs found

    Hodge theory on Cheeger spaces

    Get PDF
    We extend the study of the de Rham operator with ideal boundary conditions from the case of isolated conic singularities, as analyzed by Cheeger, to the case of arbitrary stratified pseudomanifolds. We introduce a class of ideal boundary operators and the notion of mezzoperversity, which intermediates between the standard lower and upper middle perversities in intersection theory, as interpreted in this de Rham setting, and show that the de Rham operator with these boundary conditions is Fredholm and has compact resolvent. We also prove an isomorphism between the resulting Hodge and L2 de Rham cohomology groups, and that these are independent of the choice of iterated edge metric. On spaces which admit ideal boundary conditions of this type which are also self-dual, which we call ‘Cheeger spaces’, we show that these Hodge/de Rham cohomology groups satisfy Poincare' Duality

    Infinitesimal deformations of a formal symplectic groupoid

    Full text link
    Given a formal symplectic groupoid GG over a Poisson manifold (M,π0)(M, \pi_0), we define a new object, an infinitesimal deformation of GG, which can be thought of as a formal symplectic groupoid over the manifold MM equipped with an infinitesimal deformation π0+ϵπ1\pi_0 + \epsilon \pi_1 of the Poisson bivector field π0\pi_0. The source and target mappings of a deformation of GG are deformations of the source and target mappings of GG. To any pair of natural star products (∗,∗~)(\ast, \tilde\ast) having the same formal symplectic groupoid GG we relate an infinitesimal deformation of GG. We call it the deformation groupoid of the pair (∗,∗~)(\ast, \tilde\ast). We give explicit formulas for the source and target mappings of the deformation groupoid of a pair of star products with separation of variables on a Kaehler- Poisson manifold. Finally, we give an algorithm for calculating the principal symbols of the components of the logarithm of a formal Berezin transform of a star product with separation of variables. This algorithm is based upon some deformation groupoid.Comment: 22 pages, the paper is reworked, new proofs are adde

    A local families index formula for d-bar operators on punctured Riemann surfaces

    Full text link
    Using heat kernel methods developed by Vaillant, a local index formula is obtained for families of d-bar operators on the Teichmuller universal curve of Riemann surfaces of genus g with n punctures. The formula also holds on the moduli space M{g,n} in the sense of orbifolds where it can be written in terms of Mumford-Morita-Miller classes. The degree two part of the formula gives the curvature of the corresponding determinant line bundle equipped with the Quillen connection, a result originally obtained by Takhtajan and Zograf.Comment: 47 page

    L^2 rho form for normal coverings of fibre bundles

    Full text link
    We define the secondary invariants L^2- eta and -rho forms for families of generalized Dirac operators on normal coverings of fibre bundles. On the covering family we assume transversally smooth spectral projections, and Novikov--Shubin invariants bigger than 3(dim B+1) to treat the large time asymptotic for general operators. In the particular case of a bundle of spin manifolds, we study the L^2- rho class in relation to the space of positive scalar curvature vertical metrics.Comment: 21 pages, revised versio

    Pointwise Bounds for Steklov Eigenfunctions

    Get PDF
    Let (Ω,g) be a compact, real-analytic Riemannian manifold with real-analytic boundary ∂Ω. The harmonic extensions of the boundary Dirichlet-to-Neumann eigenfunctions are called Steklov eigenfunctions. We show that the Steklov eigenfunctions decay exponentially into the interior in terms of the Dirichlet-to-Neumann eigenvalues and give a sharp rate of decay to first order at the boundary. The proof uses the Poisson representation for the Steklov eigenfunctions combined with sharp h-microlocal concentration estimates for the boundary Dirichlet-to-Neumann eigenfunctions near the cosphere bundle S∗∂Ω. These estimates follow from sharp estimates on the concentration of the FBI transforms of solutions to analytic pseudodifferential equations Pu=0 near the characteristic set {σ(P)=0}

    Oscilatory modules

    Full text link
    Developing the ideas of Bressler and Soibelman and of Karabegov, we introduce a notion of an oscillatory module on a symplectic manifold which is a sheaf of modules over the sheaf of deformation quantization algebras with an additional structure. We compare the category of oscillatory modules on a torus to the Fukaya category as computed by Polishchuk and Zaslow.Comment: To appear in the proceedings of Moshe Flato Memorial Conference, November, 2008, Ben Gurion Universit

    On higher eta invariants and metrics of positive scalr curvature

    No full text
    corecore