148 research outputs found

    Encroachment diminishes herbaceous plant diversity in grassy ecosystems worldwide

    Get PDF
    Woody encroachment is ubiquitous in grassy ecosystems worldwide, but its global impacts on the diversity of herbaceous plants that characterise and define these ecosystems remain unquantified. The pervasiveness of encroachment is relatively easily observed via remote sensing, but its impacts on plant diversity and richness below the canopy can only be observed via field‐based studies. Via a meta‐analysis of 42 field studies across tropical to temperate grassy ecosystems, we quantified how encroachment altered herbaceous species richness, and the richness of forbs, C(3) graminoids and C(4) graminoids. Across studies, the natural logarithm of the response ratio (lnRR) of herbaceous species richness ranged from −3.33 to 0.34 with 87% of encroached ecosystems negatively impacted. Assessment of the extent of encroachment, duration of encroachment, mean annual rainfall, latitude, and continent demonstrated that only extent of encroachment had relevance in the data (univariate model including a random effect of study explained 45.4% of variance). The global weighted mean lnRR of species richness decreased from −0.245 at 66%. Continued encroachment results in substantial loss of herbaceous diversity at medium and high extents, with a loss of richness that is not replaced. Although all functional groups are significantly negatively impacted by encroachment, forb richness is relatively more sensitive than graminoid richness, and C(4) graminoid richness relatively more than C(3) graminoid richness. Although no geographic or climatic correlates had relevance in the data, encroachment as an emergent product of global change coalesces to decrease ground layer light availability, lead to loss of fire and grazers, and alter hydrology and soils. Encroachment is accelerating and grassy ecosystems require urgent attention to determine critical woody cover thresholds that facilitate diverse and resilient grassy ecosystems

    Focus on changing fire regimes: interactions with climate, ecosystems, and society

    Get PDF
    Fire is a complex Earth system phenomenon that fundamentally affects vegetation distributions, biogeochemical cycling, climate, and human society across most of Earth’s land surface. Fire regimes are currently changing due to multiple interacting global change drivers, most notably climate change, land use, and direct human influences via ignition and suppression. It is therefore critical to better understand the drivers, patterns, and impacts of these changing fire regimes now and continuing into the future. Our review contributes to this focus issue by synthesizing results from 27 studies covering a broad range of topics. Studies are categorized into (i) Understanding contemporary fire patterns, drivers, and effects; (ii) Human influences on fire regimes; (iii) Changes in historical fire regimes; (iv) Future projections; (v) Novel techniques; and (vi) Reviews. We conclude with a discussion on progress made, major remaining research challenges, and recommended directions

    Savanna responses to feral buffalo in Kakadu National Park, Australia

    Get PDF
    Savannas are the major biome of tropical regions, spanning 30% of the Earth\u27s land surface. Tree: grass ratios of savannas are inherently unstable and can be shifted easily by changes in fire, grazing, or climate. We synthesize the history and ecological impacts of the rapid expansion and eradication of an exotic large herbivore, the Asian water buffalo (Bubalus bubalus), on the mesic savannas of Kakadu National Park (KNP), a World Heritage Park located within the Alligator Rivers Region (ARR) of monsoonal north Australia. The study inverts the experience of the Serengeti savannas where grazing herds rapidly declined due to a rinderpest epidemic and then recovered upon disease control. Buffalo entered the ARR by the 1880s, but densities were low until the late 1950s when populations rapidly grew to carrying capacity within a decade. In the 1980s, numbers declined precipitously due to an eradication program. We show evidence that the rapid population expansion and Sudden removal of this exotic herbivore created two ecological cascades by altering around cover abundance and composition, which in turn affected competitive regimes and fuel loads with possible further, long-term effects due to changes in fire regimes. Overall, ecological impacts varied across a north-south gradient in KNP that corresponded to the interacting factors of precipitation, landform, and vegetation type but was also contingent upon the history of buffalo harvest. Floodplains showed the greatest degree of impact during the period of rapid buffalo expansion, but after buffalo removal, they largely reverted to their prior state. Conversely, the woodlands experienced less visible impact during the first cascade. However, in areas of low buffalo harvest and severe impact, there was little recruitment of juvenile trees into the canopy due to the indirect effects of grazing and high frequency of prescribed fires once buffalo were removed. Rain forests were clearly heavily impacted during the first cascade, but the long term consequences of buffalo increase and removal remain unclear. Due to hysteresis effects, the simple removal of an exotic herbivore was not sufficient to return savanna systems to their previous state

    Madagascar's fire regimes challenge global assumptions about landscape degradation

    Get PDF
    Narratives of landscape degradation are often linked to unsustainable fire use by local communities. Madagascar is a case in point: the island is considered globally exceptional, with its remarkable endemic biodiversity viewed as threatened by unsustainable anthropogenic fire. Yet, fire regimes on Madagascar have not been empirically characterised or globally contextualised. Here, we contribute a comparative approach to determining relationships between regional fire regimes and global patterns and trends, applied to Madagascar using MODIS remote sensing data (2003–2019). Rather than a global exception, we show that Madagascar's fire regimes are similar to 88% of tropical burned area with shared climate and vegetation characteristics, and can be considered a microcosm of most tropical fire regimes. From 2003–2019, landscape-scale fire declined across tropical grassy biomes (17%–44% excluding Madagascar), and on Madagascar at a relatively fast rate (36%–46%). Thus, high tree loss anomalies on the island (1.25–4.77× the tropical average) were not explained by any general expansion of landscape-scale fire in grassy biomes. Rather, tree loss anomalies centred in forests, and could not be explained by landscape-scale fire escaping from savannas into forests. Unexpectedly, the highest tree loss anomalies on Madagascar (4.77×) occurred in environments without landscape-scale fire, where the role of small-scale fires (<21 h [0.21 km2]) is unknown. While landscape-scale fire declined across tropical grassy biomes, trends in tropical forests reflected important differences among regions, indicating a need to better understand regional variation in the anthropogenic drivers of forest loss and fire risk. Our new understanding of Madagascar's fire regimes offers two lessons with global implications: first, landscape-scale fire is declining across tropical grassy biomes and does not explain high tree loss anomalies on Madagascar. Second, landscape-scale fire is not uniformly associated with tropical forest loss, indicating a need for socio-ecological context in framing new narratives of fire and ecosystem degradation

    Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area

    Get PDF
    Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one

    Tropical grassy biomes: linking ecology, human use and conservation

    Get PDF
    Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’

    A function-based typology for Earth’s ecosystems

    Get PDF
    As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’(1,2). Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management(3). Ecosystems vary in their biota(4), service provision(5) and relative exposure to risks(6), yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework

    Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    Get PDF
    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems

    Long-term collapse in fruit availability threatens Central African forest megafauna

    Get PDF
    Afrotropical forests host many of the world’s remaining megafauna, but even here they are confined to areas where direct human influences are low. We use a rare long-term dataset of tree reproduction and a photographic database of forest elephants to assess food availability and body condition of an emblematic megafauna species at Lopé National Park, Gabon. We show an 81% decline in fruiting over a 32-year period (1986-2018) and an 11% decline in body condition of fruit-dependent forest elephants from 2008-2018. Fruit famine in one of the last strongholds for African forest elephants should raise concern for the ability of this species and other fruit-dependent megafauna to persist in the long-term, with consequences for broader ecosystem and biosphere functioning
    corecore