58 research outputs found
Quantum measurement of the degree of polarization of a light beam
We demonstrate a coherent quantum measurement for the determination of the
degree of polarization (DOP). This method allows to measure the DOP in the
presence of fast polarization state fluctuations, difficult to achieve with the
typically used polarimetric technique. A good precision of the DOP measurements
is obtained using 8 type II nonlinear crystals assembled for spatial walk-off
compensation.Comment: 4 pages, 3 figure
Distribution of time-bin qubits over 50 km of optical fiber
We report experimental distribution of time-bin entangled qubits over 50 km
of optical fibers. Using actively stabilized preparation and measurement
devices we demonstrate violation of the CHSH Bell inequality by more than 15
standard deviations without removing the detector noise. In addition we report
a proof of principle experiment of quantum key distribution over 50 km of
optical fibers using entangled photon.Comment: 4 pages, 4 figure
Large Scale In Silico Screening on Grid Infrastructures
Large-scale grid infrastructures for in silico drug discovery open
opportunities of particular interest to neglected and emerging diseases. In
2005 and 2006, we have been able to deploy large scale in silico docking within
the framework of the WISDOM initiative against Malaria and Avian Flu requiring
about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These
achievements demonstrated the relevance of large-scale grid infrastructures for
the virtual screening by molecular docking. This also allowed evaluating the
performances of the grid infrastructures and to identify specific issues raised
by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science
Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in
the proceeding
A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
We discuss excess noise contributions of a practical balanced homodyne
detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution
(QKD). We point out the key generated from the original realistic model of GMCS
QKD may not be secure. In our refined realistic model, we take into account
excess noise due to the finite bandwidth of the homodyne detector and the
fluctuation of the local oscillator. A high speed balanced homodyne detector
suitable for GMCS QKD in the telecommunication wavelength region is built and
experimentally tested. The 3dB bandwidth of the balanced homodyne detector is
found to be 104MHz and its electronic noise level is 13dB below the shot noise
at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate
of a GMCS QKD experiment with this homodyne detector is expected to reach
Mbits/s over a few kilometers.Comment: 22 pages, 11 figure
Quantum key distribution and 1 Gbit/s data encryption over a single fibre
We perform quantum key distribution (QKD) in the presence of 4 classical
channels in a C-band dense wavelength division multiplexing (DWDM)
configuration using a commercial QKD system. The classical channels are used
for key distillation and 1 Gbps encrypted communication, rendering the entire
system independent from any other communication channel than a single dedicated
fibre. We successfully distil secret keys over fibre spans of up to 50 km. The
separation between quantum channel and nearest classical channel is only 200
GHz, while the classical channels are all separated by 100 GHz. In addition to
that we discuss possible improvements and alternative configurations, for
instance whether it is advantageous to choose the quantum channel at 1310 nm or
to opt for a pure C-band configuration.Comment: 9 pages, 7 figure
Virtual Screening on Large Scale Grids
PCSV, article in press in Parallel ComputingLarge scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment
Feasibility of free space quantum key distribution with coherent polarization states
We demonstrate for the first time the feasibility of free space quantum key
distribution with continuous variables under real atmospheric conditions. More
specifically, we transmit coherent polarization states over a 100m free space
channel on the roof of our institute's building. In our scheme, signal and
local oscillator are combined in a single spatial mode which auto-compensates
atmospheric fluctuations and results in an excellent interference. Furthermore,
the local oscillator acts as spatial and spectral filter thus allowing
unrestrained daylight operation.Comment: 12 pages, 8 figures, extensions in sections 2, 3.1, 3.2 and 4. This
is an author-created, un-copyedited version of an article accepted for
publication in New Journal of Physics (Special Issue on Quantum Cryptography:
Theory and Practice). IOP Publishing Ltd is not responsible for any errors or
omissions in this version of the manuscript or any version derived from i
Field test of quantum key distribution in the Tokyo QKD Network
A novel secure communication network with quantum key distribution in a
metropolitan area is reported. Different QKD schemes are integrated to
demonstrate secure TV conferencing over a distance of 45km, stable long-term
operation, and application to secure mobile phones.Comment: 21 pages, 19 figure
The Security of Practical Quantum Key Distribution
Quantum key distribution (QKD) is the first quantum information task to reach
the level of mature technology, already fit for commercialization. It aims at
the creation of a secret key between authorized partners connected by a quantum
channel and a classical authenticated channel. The security of the key can in
principle be guaranteed without putting any restriction on the eavesdropper's
power.
The first two sections provide a concise up-to-date review of QKD, biased
toward the practical side. The rest of the paper presents the essential
theoretical tools that have been developed to assess the security of the main
experimental platforms (discrete variables, continuous variables and
distributed-phase-reference protocols).Comment: Identical to the published version, up to cosmetic editorial change
- …