2,164 research outputs found
Shuttle on-orbit contamination and environmental effects
Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload
An experimental testbed for NEAT to demonstrate micro-pixel accuracy
NEAT is an astrometric mission proposed to ESA with the objectives of
detecting Earth-like exoplanets in the habitable zone of nearby solar-type
stars. In NEAT, one fundamental aspect is the capability to measure stellar
centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for
centroid estimation have reached a precision of about 4e-5 pixel at Nyquist
sampling. Simulations showed that a precision of 2 micro-pixels can be reached,
if intra and inter pixel quantum efficiency variations are calibrated and
corrected for by a metrology system. The European part of the NEAT consortium
is designing and building a testbed in vacuum in order to achieve 5e-6 pixel
precision for the centroid estimation. The goal is to provide a proof of
concept for the precision requirement of the NEAT spacecraft. In this paper we
give the basic relations and trade-offs that come into play for the design of a
centroid testbed and its metrology system. We detail the different conditions
necessary to reach the targeted precision, present the characteristics of our
current design and describe the present status of the demonstration.Comment: SPIE proceeding
High intensity 5 eV O-atom exposure facility for material degradation studies
An atomic oxygen exposure facility was developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in low Earth orbit. The studies that are being undertaken will provide: (1) absolute reaction cross sections for the engineering design problems, (2) formulations of reaction mechanisms for use in the selection of suitable existing materials and the design of new more resistant ones, and (3) the calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low Earth orbit to ground based investigations. The facility consists of a CW laser sustained discharge source of O-atoms, an atomic beam formation and diagnostics system, a spinning rotor viscometer, and provision for using the system for calibration of actual flight instruments
Photodesorption of CO ice
At the high densities and low temperatures found in star forming regions, all
molecules other than H2 should stick on dust grains on timescales shorter than
the cloud lifetimes. Yet these clouds are detected in the millimeter lines of
gaseous CO. At these temperatures, thermal desorption is negligible and hence a
non-thermal desorption mechanism is necessary to maintain molecules in the gas
phase. Here, the first laboratory study of the photodesorption of pure CO ice
under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO
molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5
larger than previously estimated and is comparable to estimates of other
non-thermal desorption rates. The experiments constrains the mechanism to a
single photon desorption process of ice surface molecules. The measured
efficiency of this process shows that the role of CO photodesorption in
preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ
The Embedded Super Star Cluster of SBS0335-052
We analyze the infrared (6-100 micron) spectral energy distribution of the
blue compact dwarf and metal-poor (Z=Z_solar/41) galaxy SBS0335-052. With the
help of DUSTY (Ivezic et al. 1999), a program that solves the radiation
transfer equations in a spherical environment, we evaluate that the infrared
(IR) emission of SBS0335-052 is produced by an embedded super-star cluster
(SSC) hidden under 10^5 M_solar of dust, causing 30 mag of visual extinction.
This implies that one cannot detect any stellar emission from the 2x10^6
M_solar stellar cluster even at near-infrared (NIR) wavelengths. The derived
grain size distribution departs markedly from the widely accepted size
distribution inferred for dust in our galaxy (the so-called MRN distribution,
Mathis et al. 1977), but resembles what is seen around AGNs, namely an absence
of PAH and smaller grains, and grains that grow to larger sizes (around 1
micron). The fact that a significant amount of dust is present in such a
low-metallicity galaxy, hiding from UV and optical view most of the star
formation activity in the galaxy, and that the dust size distribution cannot be
reproduced by a standard galactic law, should be borne in mind when
interpreting the spectrum of primeval galaxies.Comment: 32 pages, 3 figures,accepted for publication in A
Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling
Qubit readout is an indispensable element of any quantum information
processor. In this work, we experimentally demonstrate a non-perturbative
cross-Kerr coupling between a transmon and a polariton mode which enables an
improved quantum non-demolition (QND) readout for superconducting qubits. The
new mechanism uses the same experimental techniques as the standard QND qubit
readout in the dispersive approximation, but due to its non-perturbative
nature, it maximizes the speed, the single-shot fidelity and the QND properties
of the readout. In addition, it minimizes the effect of unwanted decay channels
such as the Purcell effect. We observed a single-shot readout fidelity of 97.4%
for short 50 ns pulses, and we quantified a QND-ness of 99% for long
measurement pulses with repeated single-shot readouts
Plasma and Warm Dust in the Collisional Ring Galaxy VIIZw466 from VLA and ISO Observations
We present the first mid-infrared (Mid-IR) (m) and radio
continuum (20,~6 and 3.6 cm) observations of the star-forming
collisional ring galaxy VII Zw 466 and its host group made with the Infrared
Space Observatory and the NRAO Very Large Array. A search was also made for CO
line emission in two of the galaxies with the Onsala 20m radio telescope and
upper limits were placed on the mass of molecular gas in those galaxies. The
ring galaxy is believed to owe its morphology to a slightly off-center
collision between an `intruder' galaxy and a disk. An off-center collision is
predicted to generate a radially expanding density wave in the disk which
should show large azimuthal variations in overdensity, and have observational
consequences. The radio continuum emission shows the largest asymmetry,
exhibiting a crescent-shaped distribution consistent with either the trapping
of cosmic-ray particles in the target disk, or an enhanced supernova rate in
the compressed region. On the other hand, the ISO observations (especially
those made at m) show a more scattered distribution, with
emission centers associated with powerful star formation sites distributed more
uniformly around the ring. Low-signal to noise observations at
m show possible emission inside the ring, with little emission
directly associated with the \ion{H}{2} regions. The observations emphasize the
complex relationship between the generation of radio emission and the
development of star formation even in relatively simple and well understood
collisional scenarios.Comment: Accepted for publication in The Astrophysical Journal, 23 pages + 6
PS figure
The Thermal Structure of Gas in Pre-Stellar Cores: A Case Study of Barnard 68
We present a direct comparison of a chemical/physical model to
multitransitional observations of C18O and 13CO towards the Barnard 68
pre-stellar core. These observations provide a sensitive test for models of low
UV field photodissociation regions and offer the best constraint on the gas
temperature of a pre-stellar core. We find that the gas temperature of this
object is surprisingly low (~7-8 K), and significantly below the dust
temperature, in the outer layers (Av < 5 mag) that are traced by C18O and 13CO
emission. As shown previously, the inner layers (Av > 5 mag) exhibit
significant freeze-out of CO onto grain surfaces. Because the dust and gas are
not fully coupled, depletion of key coolants in the densest layers raises the
core (gas) temperature, but only by ~1 K. The gas temperature in layers not
traced by C18O and 13CO emission can be probed by NH3 emission, with a
previously estimated temperature of ~10-11 K. To reach these temperatures in
the inner core requires an order of magnitude reduction in the gas to dust
coupling rate. This potentially argues for a lack of small grains in the
densest gas, presumably due to grain coagulation.Comment: 33 pages, 11 figures, accepted by Astrophysical Journa
Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium
We present a quantitative model for the infrared emission from dust in the
diffuse interstellar medium. The model consists of a mixture of amorphous
silicate grains and carbonaceous grains, each with a wide size distribution
ranging from molecules containing tens of atoms to large grains > 1 um in
diameter. We assume that the carbonaceous grains have polycyclic aromatic
hydrocarbon (PAH)-like properties at very small sizes, and graphitic properties
for radii a > 50 A. On the basis of recent laboratory studies and guided by
astronomical observations, we propose "astronomical" absorption cross sections
for use in modeling neutral and ionized PAHs from the far ultraviolet to the
far infrared. We also propose modifications to the far-infrared emissivity of
"astronomical silicate". We calculate energy distribution functions for small
grains undergoing "temperature spikes" due to stochastic absorption of
starlight photons, using realistic heat capacities and optical properties.
Using a grain size distribution consistent with the observed interstellar
extinction, we are able to reproduce the near-IR to submillimeter emission
spectrum of the diffuse interstellar medium, including the PAH emission
features at 3.3, 6.2, 7.7, 8.6, and 11.3um. The model is compared with the
observed emission at high Galactic latitudes as well as in the Galactic plane,
as measured by COBE and IRTS. We calculate infrared emission spectra for our
dust model heated by a range of starlight intensities, and we provide tabulated
dust opacities (extended tables available at
http://www.astro.princeton.edu/~draine/dust/dustmix.html)Comment: Final version published in ApJ, 554, 778 but with factor 1.086 error
in Table 6 and Fig. 16 corrected. Main change from astro-ph version 1 is
correction of typographical errors in Table 1, and correction of typo in eq.
(A2). 51 pages, 16 figures, Late
Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces
Dynamics of spreading of small droplets on surfaces has been studied by the
molecular dynamics method. Simulations have been performed for mixtures of
solvent and dimer, and solvent and tetramer droplets. For solvent particles and
dimers, layering occurs leading to stepped droplet shapes. For tetramers such
shapes occur for relatively deep and strong surface potentials only. For wider
and more shallow potentials, more rapid spreading and rounded droplet shapes
occur. These results are in accordance with experimental data on small non -
volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page
- …