20 research outputs found

    Measuring the Surface Thermal Structure of the Sea off Brittany by Ship and Aircraft

    Get PDF
    During the months of September and October 1975 the “Laboratoire d ’Océanographie Physique de l’Université de Bretagne Occidentale” (LOP) and the “Laboratoire de Météorologie Dynamique du C.N.R.S.” (LMD) made a joint study of surface temperatures and their variability over the continental plateau off the westernmost point of Brittany. Between 18 September and 28 October scientists from the LOP made several trips aboard the oceanographic vessel Capricorne operating a sonde for in-situ T.S.D. measurements. The LMD utilized an Aries radiometer which they themselves had designed and perfected. This was installed aboard a DC-3 aircraft that also carried pressure, humidity and temperature sensors. Our two objectives were as follows : 1. To compare the results obtained by two different techniques; 2. To obtain details of certain aspects of the microstructure of the sea surface, in particular over a frontal region. This paper thus proposes : a) To compare the results of the bathysonde measurements carried out by the LOP on Capricorne with those of a team from the “ Centre Océanologique de Bretagne" (COB) embarked in the oceanographic vessel Cry os from 16 to 29 September 1975. b) To present charts derived from radiometric measurements and to compare these charts with previous ones. c) To present aspects of the fine thermal structure at the surface from a certain number of radial passes with the DC-3

    AEGIS: Infrared Spectral Energy Distributions of MIPS 70micron selected sources

    Get PDF
    We present 0.5 -160 micron Spectral Energy Distributions (SEDs) of galaxies, detected at 70microns with the Multiband Imaging Photometer for Spitzer (MIPS), using broadband imaging data from Spitzer and ground-based telescopes. Spectroscopic redshifts, in the range 0.2<z<1.5, have been measured as part of the Deep Extragalactic Evolutionary Probe2 (DEEP2) project. Based on the SEDs we explore the nature and physical properties of the sources. Using the optical spectra we derive Hbeta and [OII]-based Star Formation Rates (SFR) which are 10-100 times lower than SFR estimates based on IR and radio. The median offset in SFR between optical and IR is reduced by a factor of ~3 when we apply a typical extinction corrections. We investigate mid-to-far infrared correlations for low redshift (>0.5) and high redshift (0.5<z<1.2) bins. Using this unique ``far-infrared'' selected sample we derive an empirical mid to far-infrared relationship that can be used to estimate the infrared energy budget of galaxies in the high-redshift universe. Our sample can be used as a template to translate far-infrared luminosities into bolometric luminosities for high redshift objects.Comment: 4 pages, 5 figures, accepted for publication in AEGIS ApJL Special Issu

    Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features

    Get PDF
    Spectra have been obtained with the low-resolution modules of the Infrared Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources having fν_{\nu}(24 micron) > 0.75 mJy. Sources were chosen from a survey of 8.2 deg2^{2} within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS) using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope. Most sources are optically very faint (I > 24mag). Redshifts have previously been determined for 34 sources, based primarily on the presence of a deep 9.7 micron silicate absorption feature, with a median z of 2.2. Spectra are presented for the remaining 24 sources for which we were previously unable to determine a confident redshift because the IRS spectra show no strong features. Optical photometry from the NDWFS and infrared photometry with MIPS and the Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K photometry from the Keck I telescope for some objects. The sources without strong spectral features have overall spectral energy distributions (SEDs) and distributions among optical and infrared fluxes which are similar to those for the sources with strong absorption features. Nine of the 24 sources are found to have feasible redshift determinations based on fits of a weak silicate absorption feature. Results confirm that the "1 mJy" population of 24 micron Spitzer sources which are optically faint is dominated by dusty sources with spectroscopic indicators of an obscured AGN rather than a starburst. There remain 14 of the 58 sources observed in Bootes for which no redshift could be estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap

    3D Quantification of Ultrasound Images: Application to Mouse Embryo Imaging In Vivo

    Get PDF
    International audienceHigh frequency ultrasound imaging has become an effective tool for anatomical mice studies. This work is focused on 3D quantification of mouse embryo development to extract pertinent information of its evolution. A series of B-Scan ultrasound images was acquired at different spatial positions along the embryo. A 3D deformable model was used to segment the images. A pregnant female mouse at embryonic day 14.5 was imaged with an ATL HDI 5000, 7-15MHz linear array. The probe was moved by a step by step motor along the abdomen of the mouse. 3D segmentation results are presented including volume quantification of the embryo

    The Evolution of the Star Formation Rate of Galaxies at 0.0 < z < 1.2

    Get PDF
    We present the 24 micron rest-frame luminosity function (LF) of star-forming galaxies in the redshift range 0.0 < z < 0.6 constructed from 4047 spectroscopic redshifts from the AGN and Galaxy Evolution Survey of 24 micron selected sources in the Bootes field of the NOAO Deep Wide-Field Survey. This sample provides the best available combination of large area (9 deg^2), depth, and statistically complete spectroscopic observations, allowing us to probe the evolution of the 24 micron LF of galaxies at low and intermediate redshifts while minimizing the effects of cosmic variance. In order to use the observed 24 micron luminosity as a tracer for star formation, active galactic nuclei (AGNs) that could contribute significantly at 24 micron are identified and excluded from our star-forming galaxy sample based on their mid-IR spectral energy distributions or the detection of X-ray emission. The evolution of the 24 micron LF of star-forming galaxies for redshifts of z < 0.65 is consistent with a pure luminosity evolution where the characteristic 24 micron luminosity evolves as (1+z)^(3.8+/-0.3). We extend our evolutionary study to encompass 0.0 < z < 1.2 by combining our data with that of the Far-Infrared Deep Extragalactic Legacy Survey. Over this entire redshift range the evolution of the characteristic 24 micron luminosity is described by a slightly shallower power law of (1+z)^(3.4+/-0.2). We find a local star formation rate density of (1.09+/-0.21) x 10^-2 Msun/yr/Mpc^-3, and that it evolves as (1+z)^(3.5+/-0.2) over 0.0 < z < 1.2. These estimates are in good agreement with the rates using optical and UV fluxes corrected for the effects of intrinsic extinction in the observed sources. This agreement confirms that star formation at z <~ 1.2 is robustly traced by 24 micron observations and that it largely occurs in obscured regions of galaxies. (Abridged)Comment: ApJ, in press, 16 pages 9 figure

    Bars in early- and late-type disks in COSMOS

    Get PDF
    We investigate the (large-scale) bar fraction in a mass-complete sample of M > 10^10.5 Msun disk galaxies at 0.2 < z < 0.6 in the COSMOS field. The fraction of barred disks strongly depends on mass, disk morphology, and specific star formation rate (SSFR). At intermediate stellar mass (10^10.5 < M < 10^11 Msun) the bar fraction in early-type disks is much higher, at all redshifts, by a factor ~2, than that in late-type disks. This trend is reversed at higher stellar mass (M > 10^11 Msun), where the fraction of bars in early-type disks becomes significantly lower, at all redshifts, than that in late-type disks. The bar fractions for galaxies with low and high SSFRs closely follow those of the morphologically-selected early-type and late-type populations, respectively. This indicates a close correspondence between morphology and SSFR in disk galaxies at these earlier epochs. Interestingly, the total bar fraction in 10^10.5 < M < 10^11 Msun disks is built up by a factor of ~2 over the redshift interval explored, while for M > 10^11 Msun disks it remains roughly constant. This indicates that, already by z ~ 0.6, spectral and morphological transformations in the most massive disk galaxies have largely converged to the familiar Hubble sequence that we observe in the local Universe, while for intermediate mass disks this convergence is ongoing until at least z ~ 0.2. Moreover, these results highlight the importance of employing mass-limited samples for quantifying the evolution of barred galaxies. Finally, the evolution of the barred galaxy populations investigated does not depend on the large-scale environmental density (at least, on the scales which can be probed with the available photometric redshifts).Comment: 10 pages, 4 figures, updated to reflect version accepted by MNRA

    Spectroscopy of luminous z>7 galaxy candidates and sources of contamination in z>7 galaxy searches

    Get PDF
    We present three bright z+ dropout candidates selected from deep Near-Infrared (NIR) imaging of the COSMOS 2 square degree field. All three objects match the 0.8-8um colors of other published z>7 candidates but are three magnitudes brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02um with Keck-DEIMOS and all three covering 0.94-1.10um and 1.52-1.80um with Keck-NIRSPEC detects weak spectral features tentatively identified as Ly-alpha at z=6.95 and z=7.69 in two of the objects. The third object is placed at z~1.6 based on a 24um and weak optical detection. A comparison with the spectral energy distributions of known z<7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry yields no objects with similar colors. However, the lambda>1um properties of all three objects can be matched to optically detected sources with photometric redshifts at z~1.8, so the non-detection in the i+ and z+ bands are the primary factors which favors a z>7 solution. If any of these objects are at z~7 the bright end of the luminosity function is significantly higher at z>7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman-Break selection must be contaminated by a previously unknown population of low redshift objects with very strong breaks in their broad band spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift is discussed. We show that the primary limitation of z>7 galaxy searches with broad filters is the depth of the available optical data.Comment: 15 Pages, 15 figures, accepted to Ap

    Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions

    Get PDF
    The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1-1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frame K-band galaxy luminosity function up to redshift 4 (Cirasuolo et al. 2010), combined with a determination of galaxy SED-type fractions. These are based on fitting SWIRE templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and AGN galaxies in that redshift range are estimated, and two alternative extrapolations of SED-types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the UV to the IR, the evolving star formation rate density of the universe, the evolving contribution to the bolometric EBL from the different galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, from another observationally-based model and observational data. The EBL uncertainties in our modeling based directly on the data are quantified, and their consequences for attenuation of very high energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from infrared and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.Comment: 25 pages, 18 figures, 4 tables; accepted for publication in MNRAS on September 3, 2010. Online material available at http://side.iaa.es/EB

    The Herschel* PEP-HERMES Luminosity Function- I. Probing the Evolution of PACS Selected Galaxies to z approx. equal to 4

    Get PDF
    We exploit the deep and extended far-IR data sets (at 70, 100 and 160 m) of the Herschel Guaranteed Time Observation (GTO) PACS Evolutionary Probe (PEP) Survey, in combination with the Herschel Multi-tiered Extragalactic Survey data at 250, 350 and 500 m, to derive the evolution of the rest-frame 35-, 60-, 90- and total infrared (IR) luminosity functions (LFs) up to z 4.We detect very strong luminosity evolution for the total IR LF (LIR (1 + z)(sup 3.55 +/- 0.10) up to z 2, and (1 + z)(sup 1.62 +/- 0.51) at 2 less than z less than approximately 4) combined with a density evolution ( (1 + z)(sup 0.57 +/- 0.22) up to z 1 and (1 + z)(sup 3.92 +/- 0.34) at 1 less than z less than approximately 4). In agreement with previous findings, the IR luminosity density (IR) increases steeply to z 1, then flattens between z 1 and z 3 to decrease at z greater than approximately 3. Galaxies with different spectral energy distributions, masses and specific star formation rates (SFRs) evolve in very different ways and this large and deep statistical sample is the first one allowing us to separately study the different evolutionary behaviours of the individual IR populations contributing to IR. Galaxies occupying the well-established SFR-stellar mass main sequence (MS) are found to dominate both the total IR LF and IR at all redshifts, with the contribution from off-MS sources (0.6 dex above MS) being nearly constant (20 per cent of the total IR) and showing no significant signs of increase with increasing z over the whole 0.8 < z <2.2 range. Sources with mass in the range 10 log(M/solar mass) 11 are found to dominate the total IR LF, with more massive galaxies prevailing at the bright end of the high-z (greater than approximately 2) LF. A two-fold evolutionary scheme for IR galaxies is envisaged: on the one hand, a starburst-dominated phase in which the Super Massive Black Holes (SMBH) grows and is obscured by dust (possibly triggered by a major merging event), is followed by an AGN-dominated phase, then evolving towards a local elliptical. On the other hand, moderately star-forming galaxies containing a low-luminosity AGN have various properties suggesting they are good candidates for systems in a transition phase preceding the formation of steady spiral galaxies
    corecore