348 research outputs found
Pure multiplicative stochastic resonance of anti-tumor model with seasonal modulability
The effects of pure multiplicative noise on stochastic resonance in an
anti-tumor system modulated by a seasonal external field are investigated by
using theoretical analyses of the generalized potential and numerical
simulations. For optimally selected values of the multiplicative noise
intensity quasi-symmetry of two potential minima and stochastic resonance are
observed. Theoretical results and numerical simulations are in good
quantitative agreement.Comment: 5 pages, 5 figure
Behavior of tumors under nonstationary theraphy
We present a model for the interaction dynamics of lymphocytes-tumor cells
population. This model reproduces all known states for the tumor. Futherly,we
develop it taking into account periodical immunotheraphy treatment with
cytokines alone. A detailed analysis for the evolution of tumor cells as a
function of frecuency and theraphy burden applied for the periodical treatment
is carried out. Certain threshold values for the frecuency and applied doses
are derived from this analysis. So it seems possible to control and reduce the
growth of the tumor. Also, constant values for cytokines doses seems to be a
succesful treatment.Comment: 6 pages, 7 figure
X-RED: A Satellite Mission Concept To Detect Early Universe Gamma Ray Bursts
Gamma ray bursts (GRBs) are the most energetic eruptions known in the
Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX
have detected more than 2700 GRBs and, although observational confirmation is
still required, it is now generally accepted that many of these bursts are
associated with the collapse of rapidly spinning massive stars to form black
holes. Consequently, since first generation stars are expected to be very
massive, GRBs are likely to have occurred in significant numbers at early
epochs. X-red is a space mission concept designed to detect these extremely
high redshifted GRBs, in order to probe the nature of the first generation of
stars and hence the time of reionisation of the early Universe. We demonstrate
that the gamma and x-ray luminosities of typical GRBs render them detectable up
to extremely high redshifts (z~10-30), but that current missions such as HETE2
and SWIFT operate outside the observational range for detection of high
redshift GRB afterglows. Therefore, to redress this, we present a complete
mission design from the science case to the mission architecture and payload,
the latter comprising three instruments, namely wide field x-ray cameras to
detect high redshift gamma-rays, an x-ray focussing telescope to determine
accurate coordinates and extract spectra, and an infrared spectrograph to
observe the high redshift optical afterglow. The mission is expected to detect
and identify for the first time GRBs with z > 10, thereby providing constraints
on properties of the first generation of stars and the history of the early
Universe.Comment: 14 pages, 10 figures, spie.cls neede
Global existence for semilinear reaction-diffusion systems on evolving domains
We present global existence results for solutions of reaction-diffusion
systems on evolving domains. Global existence results for a class of
reaction-diffusion systems on fixed domains are extended to the same systems
posed on spatially linear isotropically evolving domains. The results hold
without any assumptions on the sign of the growth rate. The analysis is valid
for many systems that commonly arise in the theory of pattern formation. We
present numerical results illustrating our theoretical findings.Comment: 24 pages, 3 figure
The Ultraviolet Spectrum and Physical Properties of the Mass Donor Star in HD 226868 = Cygnus X-1
We present an examination of high resolution, ultraviolet spectroscopy from
Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the
massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based
optical spectra to determine the effective temperature and gravity of the O9.7
Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line
blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0
+/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The
optical spectrum is best fit with models that have enriched He and N
abundances. We fit the model spectral energy distribution for this temperature
and gravity to the UV, optical, and IR fluxes to determine the angular size of
and extinction towards the binary. The angular size then yields relations for
the stellar radius and luminosity as a function of distance. By assuming that
the supergiant rotates synchronously with the orbit, we can use the radius -
distance relation to find mass estimates for both the supergiant and black hole
as a function of the distance and the ratio of stellar to Roche radius. Fits of
the orbital light curve yield an additional constraint that limits the
solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun
for the supergiant and 11^{+5}_{-3} M_sun for the black hole.Comment: ApJ in pres
Parameter identification problems in the modelling of cell motility
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A LevenbergâMarquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree
Tobacco\u27s Minor Alkaloids: Effects on Place Conditioning and Nucleus Accumbens Dopamine Release in Adult and Adolescent Rats
Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated
Towards ensemble asteroseismology of the young open clusters Chi Persei and NGC 6910
As a result of the variability survey in Chi Persei and NGC6910, the number
of Beta Cep stars that are members of these two open clusters is increased to
twenty stars, nine in NGC6910 and eleven in Chi Persei. We compare pulsational
properties, in particular the frequency spectra, of Beta Cep stars in both
clusters and explain the differences in terms of the global parameters of the
clusters. We also indicate that the more complicated pattern of the variability
among B type stars in Chi Persei is very likely caused by higher rotational
velocities of stars in this cluster. We conclude that the sample of pulsating
stars in the two open clusters constitutes a very good starting point for the
ensemble asteroseismology of Beta Cep-type stars and maybe also for other
B-type pulsators.Comment: 4 pages, Astronomische Nachrichten, HELAS IV Conference, Arecife,
Lanzarote, Feb 2010, submitte
Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators
While the first binary post-AGB stars were serendipitously discovered, the
distinct characteristics of their Spectral Energy Distribution (SED) allowed us
to launch a more systematic search for binaries. We selected post-AGB objects
which show a broad dust excess often starting already at H or K, pointing to
the presence of a gravitationally bound dusty disc in the system. We started a
very extensive multi-wavelength study of those systems and here we report on
our radial velocity and photometric monitoring results for six stars of early F
type, which are pulsators of small amplitude. To determine the radial velocity
of low signal-to-noise time-series, we constructed dedicated auto-correlation
masks. The radial velocity variations were subjected to detailed analysis to
differentiate between pulsational variability and variability due to orbital
motion. Finally orbital minimalisation was performed to constrain the orbital
elements. All of the six objects are binaries, with orbital periods ranging
from 120 to 1800 days. Five systems have non-circular orbits. The mass
functions range from 0.004 to 0.57 solar mass and the companions are likely
unevolved objects of (very) low initial mass. We argue that these binaries must
have been subject to severe binary interaction when the primary was a cool
supergiant. Although the origin of the circumstellar disc is not well
understood, the disc is generally believed to be formed during this strong
interaction phase. The eccentric orbits of these highly evolved objects remain
poorly understood. With the measured orbits and mass functions we conclude that
the circumbinary discs seem to have a major impact on the evolution of a
significant fraction of binary systems.Comment: 13 pages, 15 figures, accepted for Astronomy and Astrophysic
- âŚ