110 research outputs found

    Online decentralized tracking for nonlinear time-varying optimal power flow of coupled transmission-distribution grids

    Full text link
    The coordinated alternating current optimal power flow (ACOPF) for coupled transmission-distribution grids has become crucial to handle problems related to high penetration of renewable energy sources (RESs). However, obtaining all system details and solving ACOPF centrally is not feasible because of privacy concerns. Intermittent RESs and uncontrollable loads can swiftly change the operating condition of the power grid. Existing decentralized optimization methods can seldom track the optimal solutions of time-varying ACOPFs. Here, we propose an online decentralized optimization method to track the time-varying ACOPF of coupled transmission-distribution grids. First, the time-varying ACOPF problem is converted to a dynamic system based on Karush-Kuhn-Tucker conditions from the control perspective. Second, a prediction term denoted by the partial derivative with respect to time is developed to improve the tracking accuracy of the dynamic system. Third, a decentralized implementation for solving the dynamic system is designed based on only a few information exchanges with respect to boundary variables. Moreover, the proposed algorithm can be used to directly address nonlinear power flow equations without relying on convex relaxations or linearization techniques. Numerical test results reveal the effectiveness and fast-tracking performance of the proposed algorithm.Comment: 18 pages with 15 figure

    Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils

    Get PDF
    Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN–PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN–PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis

    Comparative effectiveness and safety of laser, needle, and “quick fenestrater” in in situ fenestration during thoracic endovascular aortic repair

    Get PDF
    BackgroundSpecial instruments are needed for the revascularization of aortic branches in in situ fenestration during thoracic endovascular aortic repair (TEVAR). This prospective study compared the effectiveness and safety of three currently used fenestraters: laser, needle, and Quick Fenestrater (QF).MethodsIn all, 101 patients who underwent TEVAR for aortic disease (dissection, n = 62; aneurysm, n = 16, or ulcer, n = 23) were enrolled. All patients were randomly assigned to three groups: 34 were assigned to laser fenestration, 36 to needle fenestration, and 31 to QF fenestration. The epidemiological data, treatment, imaging findings, and follow-up outcomes were analyzed using data from the medical records.ResultsThe technical success rates of the laser, needle, and QF fenestration groups were 94.1%, 94.4%, and 100% (p > 0.05). After correction of mixed factors such as age and gender, it was showed the average operative time (Laser group: 130.01 ± 9.36 min/ Needle group: 149.80 ± 10.18 min vs. QF group: 101.10 ± 6.75 min, p < 0.001), fluoroscopy time (Laser group: 30.16 ± 9.81 min/ Needle group: 40.20 ± 9.91 min vs. QF group: 19.91 ± 5.42 min, p < 0.001), fenestration time (Laser group 5.50 ± 3.10 min / Needle group 3.50 ± 1.50 min vs. QF group 0.67 ± 0.06 min, p < 0.001), and guide wire passage time after fenestration (Laser group 5.10 ± 1.70 min / Needle group 4.28 ± 1.60 min vs. QF group 0.07 ± 0.01 min, p < 0.001) were all shorter with QF fenestration than with the other two tools. The overall perioperative complication rates of the laser, needle, and QF fenestration groups were 5.9%, 5.6%, and 0% (p > 0.05): One case of sheath thermal injury and one case of vertebral artery ischemia occurred in the laser fenestration group; one case each of access site hematoma and brachial artery thrombosis were reported in the needle fenestration group. 89 (88.1%, 89/101) patients were followed for a median of 12.6 ± 1.6 months. The overall postoperative complication rates of the laser, needle, and QF fenestration groups were 3.3%, 6.5%, and 0% (p > 0.05): In the laser fenestration group, there was one death due to postoperative ST-segment elevation myocardial infarction; in the needle fenestration group, one patient developed occlusion of the bridge stent; no complications occurred in the QF group.ConclusionAll three fenestration methods were effective in reconstructing supra-arch artery during TEVAR. QF fenestration required less contrast agent, with a shorter surgery duration and fewer complications than laser and needle fenestration

    Medical Economic Consequences, Predictors, and Outcomes of Immediate Atrial Fibrillation Recurrence after Radiofrequency Ablation

    Get PDF
    Background and aims: Immediate recurrence (Im-Recurr), a type of atrial fibrillation (AF) recurrence occurring during the blanking period after radiofrequency catheter ablation (RFCA), has received little attention. Therefore, this study was aimed at exploring the clinical significance of Im-Recurr in patients with AF after RFCA. Methods: This study retrospectively included patients with AF who underwent RFCA at our center. Regression, propensity score matching (PSM), and survival curve analyses were conducted to investigate the effects of Im-Recurr on costs, hospitalization durations, AF recurrence rates, and predictors of Im-Recurr. Results: A total of 898 patients were included, among whom 128 developed Im-Recurr after RFCA. Multiple linear regression analysis revealed that Im-Recurr correlated with greater cost, hospitalization duration, and hospitalization duration after ablation. Logistic regression and PSM analyses indicated that intraoperative electric cardioversion (IEC) was an independent predictor of Im-Recurr. The follow-up results suggested a significantly higher 1-year cumulative AF recurrence rate in the Im-Recurr group than the control group. Conclusions: Im-Recurr significantly increases the cost and length of hospitalization for patients with AF undergoing RFCA and is associated with an elevated 1-year cumulative AF recurrence rate. IEC serves as an independent predictor of Im-Recurr. Registration number: ChiCTR2200065235

    Low temperature and temperature decline increase acute aortic dissection risk and burden: A nationwide case crossover analysis at hourly level among 40,270 patients.

    Get PDF
    Background: Acute aortic dissection (AAD) is a life-threatening cardiovascular emergency with high mortality, so identifying modifiable risk factors of AAD is of great public health significance. The associations of non-optimal temperature and temperature variability with AAD onset and the disease burden have not been fully understood. Methods: We conducted a time-stratified case-crossover study using a nationwide registry dataset from 1,868 hospitals in 313 Chinese cities. Conditional logistic regression and distributed lag models were used to investigate associations of temperature and temperature changes between neighboring days (TCN) with the hourly AAD onset and calculate the attributable fractions. We also evaluated the heterogeneity of the associations. Findings: A total of 40,270 eligible AAD cases were included. The exposure-response curves for temperature and TCN with AAD onset risk were both inverse and approximately linear. The risks were present on the concurrent hour (for temperature) or day (for TCN) and lasted for almost 1 day. The cumulative relative risks of AAD were 1.027 and 1.026 per 1°C lower temperature and temperature decline between neighboring days, respectively. The associations were significant during the non-heating period, but were not present during the heating period in cities with central heating. 23.13% of AAD cases nationwide were attributable to low temperature and 1.58% were attributable to temperature decline from the previous day. Interpretation: This is the largest nationwide study demonstrating robust associations of low temperature and temperature decline with AAD onset. We, for the first time, calculated the corresponding disease burden and further showed that central heating may be a modifier for temperature-related AAD risk and burden. Funding: This work was supported by the National Natural Science Foundation of China (92043301 and 92143301), Shanghai International Science and Technology Partnership Project (No. 21230780200), the Medical Research Council-UK (MR/R013349/1), and the Natural Environment Research Council UK (NE/R009384/1)

    Land Use Changes Induced County-Scale Carbon Consequences in Southeast China 1979–2020, Evidence from Fuyang, Zhejiang Province

    No full text
    Land use change (LUC) is the most dynamic force in terrestrial carbon stock change, and it is imperative to account for the dynamics of LUC in carbon stock change when forming land use policies. This paper explored the impacts of LUCs on carbon (C) stocks at a county scale and detected changes of soil C stocks within a county-scale land use planning policy. The LUCs within 1979–2006 in Fuyang County (eastern China) and Fuyang Land Use Master Planning (FLUMP) (2006–2020) were selected for this pilot study. The estimates of C stock changes were examined by compiling vegetation and soil organic C density data from six land use types, and through literature reviews and field surveys. The results showed that LUCs between 1979 and 2006 already caused a vegetation carbon (VC) decrease of 273.44 Gg and a soil organic carbon (SOC) decrease of 771.01 Gg, mainly due to urbanization processes. Further, the FLUMP (2006–2020) is expected to lead to a potential C loss of 25.93 × 10−3 Mg C ha−1year−1 for vegetation and 27.48 × 10−3 Mg C ha−1year−1 for soil between 2006 and 2020. As the situation stands, it is urgent to devise rational policies and effective measures to reverse the C loss process

    Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    No full text
    Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction
    corecore