230 research outputs found
Bis[4-(dimethylÂamino)Âpyridinium] tetraÂchloridozincate
In the title compound, (C7H11N2)2[ZnCl4], [ZnCl4]2â anions and 4-(dimethylÂamino)Âpyridinium cations are held together by various interÂmolecular interÂactions including Coulombic attraction, hydrogen bonding and ÏâÏ stacking interÂactions. Three Cl atoms of the [ZnCl4]2â tetraÂhedron act as acceptors in NâHâŻCl hydrogen bonds. The hydrogen bonds, both of which are bifurcated, lead to the formation of a three-dimensional network. Within the network, interÂmolecular ÏâÏ stacking interÂactions with a centroidâcentroid distance of 3.5911â
(7)â
Ă
arrange the 4-(dimethylÂamino)Âpyridinium cations into antiÂparallel dimers
A Systematic Scoping Review: What is the Risk from Child-Dog Interactions to Dog Quality of Life?
There is growing interest in the value of assistance dogs, therapy dogs, and untrained pet dogs, for supporting children with specific needs. Research in this area focuses almost exclusively on the effect of dogs on child well-being and quality of life. The lack of research reporting the role of dog quality of life in this dynamic limits the development of best practice guidelines. Little attention has been paid to the risk from structured and unstructured exposures to children for dog quality of life to best protect the well-being of both parties and maximize the quality of interactions to enhance therapeutic effects.
This systematic scoping review searched five databases to address the question âwhat is the risk from child-dog interactions to the quality of life of assistance, therapy and pet dogs?â The review identified that there is limited specific scientific investment in understanding the relationship between child-dog interactions and dog quality of life. Of the five relevant articles that were identified specifically addressing this issue, two looked at aspects relating to quality of life of dogs living in family homes, (1=pet dogs, 1=trained assistance dogs). The remaining three papers reported factors relevant to quality of life of trained dogs working in structured therapy sessions. Specific child-dog interactions may be important risk factors to consider in relation to dog quality of life, specifically interactions involving unprovoked child attention (e.g., rough contact), interactions and environmental predictability (e.g., meltdowns and recreation time) and child initiated games (e.g., âdress upâ). Identifying and monitoring the intensity and frequency of these interactions may be important for protecting dog quality of life in the therapeutic and home environment
Measurement of the Michel Parameters in Leptonic Tau Decays
The Michel parameters of the leptonic tau decays are measured using the OPAL
detector at LEP. The Michel parameters are extracted from the energy spectra of
the charged decay leptons and from their energy-energy correlations. A new
method involving a global likelihood fit of Monte Carlo generated events with
complete detector simulation and background treatment has been applied to the
data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding
to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu
universality is assumed and inferring the tau polarization from neutral current
data, the measured Michel parameters are extracted. Limits on non-standard
coupling constants and on the masses of new gauge bosons are obtained. The
results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European
Physical Journal
Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model
BACKGROUND: Exposure of the airways to carbonaceous nanoparticles can contribute to the development of immune diseases both via the aggravation of the allergic immune response in sensitized individuals and by adjuvant mechanisms during the sensitization against allergens. The cellular and molecular mechanisms involved in these adverse pathways are not completely understood. We recently described that the reduction of carbon nanoparticle-induced lung inflammation by the application of the compatible solute ectoine reduced the aggravation of the allergic response in an animal system. In the current study we investigated the influence of carbon nanoparticles on the sensitization of animals to ovalbumin via the airways. Ectoine was used as a preventive strategy against nanoparticle-induced neutrophilic lung inflammation. METHODS: Balb/c mice were repetitively exposed to the antigen ovalbumin after induction of airway inflammation by carbon nanoparticles, either in the presence or in the absence of ectoine. Allergic sensitization was monitored by measurement of immunoglobulin levels and immune responses in lung and lung draining lymph nodes after challenge. Furthermore the role of dendritic cells in the effect of carbon nanoparticles was studied in vivo in the lymph nodes but also in vitro using bone marrow derived dendritic cells. RESULTS: Animals exposed to antigen in the presence of carbon nanoparticles showed increased effects with respect to ovalbumin sensitization, to the allergic airway inflammation after challenge, and to the specific T(H)2 response in the lymph nodes. The presence of ectoine during the sensitization significantly reduced these parameters. The number of antigen-loaded dendritic cells in the draining lymph nodes was identified as a possible cause for the adjuvant effect of the nanoparticles. In vitro assays indicate that the direct interaction of the particles with dendritic cells is not able to trigger CCR7 expression, while this endpoint is achieved by lung lavage fluid from nanoparticle-exposed animals. CONCLUSIONS: Using the intervention strategy of applying ectoine into the airways of animals we were able to demonstrate the relevance of neutrophilic lung inflammation for the adjuvant effect of carbon nanoparticles on allergic sensitization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-015-0093-5) contains supplementary material, which is available to authorized users
Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis
This document is the Accepted Manuscript version of the following article: Riessland et al., 'Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis', The American Journal of Human Genetics, Vol. 100 (2): 297-315, first published online 26 January 2017. The final, published version is available online at doi: http://dx.doi.org/10.1016/j.ajhg.2017.01.005 © 2017 American Society of Human Genetics.Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca(2+)-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.Peer reviewedFinal Accepted Versio
First Direct Observation of Collider Neutrinos with FASER at the LHC
We report the first direct observation of neutrino interactions at a particle
collider experiment. Neutrino candidate events are identified in a 13.6 TeV
center-of-mass energy collision data set of 35.4 fb using the
active electronic components of the FASER detector at the Large Hadron
Collider. The candidates are required to have a track propagating through the
entire length of the FASER detector and be consistent with a muon neutrino
charged-current interaction. We infer neutrino interactions
with a significance of 16 standard deviations above the background-only
hypothesis. These events are consistent with the characteristics expected from
neutrino interactions in terms of secondary particle production and spatial
distribution, and they imply the observation of both neutrinos and
anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.Comment: Submitted to PRL on March 24 202
Progressive skin fibrosis is associated with a decline in lung function and worse survival in patients with diffuse cutaneous systemic sclerosis in the European Scleroderma Trials and Research (EUSTAR) cohort.
Objectives To determine whether progressive skin fibrosis is associated with visceral organ progression and mortality during follow-up in patients with diffuse cutaneous systemic sclerosis (dcSSc). Methods We evaluated patients from the European Scleroderma Trials and Research database with dcSSc, baseline modified Rodnan skin score (mRSS) â„7, valid mRSS at 12±3 months after baseline and â„1 annual follow-up visit. Progressive skin fibrosis was defined as an increase in mRSS >5 and â„25% from baseline to 12±3 months. Outcomes were pulmonary, cardiovascular and renal progression, and all-cause death. Associations between skin progression and outcomes were evaluated by Kaplan-Meier survival analysis and multivariable Cox regression. Results Of 1021 included patients, 78 (7.6%) had progressive skin fibrosis (skin progressors). Median follow-up was 3.4 years. Survival analyses indicated that skin progressors had a significantly higher probability of FVC decline â„10% (53.6% vs 34.4%; p<0.001) and all-cause death (15.4% vs 7.3%; p=0.003) than non-progressors. These significant associations were also found in subgroup analyses of patients with either low baseline mRSS (â€22/51) or short disease duration (â€15 months). In multivariable analyses, skin progression within 1 year was independently associated with FVC decline â„10% (HR 1.79, 95% CI 1.20 to 2.65) and all-cause death (HR 2.58, 95% CI 1.31 to 5.09). Conclusions Progressive skin fibrosis within 1 year is associated with decline in lung function and worse survival in dcSSc during follow-up. These results confirm mRSS as a surrogate marker in dcSSc, which will be helpful for cohort enrichment in future trials and risk stratification in clinical practice
- âŠ