157 research outputs found
Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes
Objectives: This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Design: Reliability study and cross-sectional analysis of hip strength and functional performance. Methods: In healthy adults aged 18-50. years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Results: Excellent reliability (intra-rater ICC = 0.77-0.96; inter-rater ICC = 0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p < 0.001) and hip ER was greater than IR (p < 0.001). Men had greater ER strength (p = 0.006) and hop for distance (p < 0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Conclusions: Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes
Hip abduction weakness in elite junior footballers is common but easy to correct quickly: a prospective sports team cohort based study
Background: Hip abduction weakness has never been documented on a population basis as a common finding in a healthy group of athletes and would not normally be found in an elite adolescent athlete. This study aimed to show that hip abduction weakness not only occurs in this group but also is common and easy to correct with an unsupervised home based program. Methods: A prospective sports team cohort based study was performed with thirty elite adolescent under-17 Australian Rules Footballers in the Australian Institute of Sport/Australian Football League Under-17 training academy. The players had their hip abduction performance assessed and were then instructed in a hip abduction muscle training exercise. This was performed on a daily basis for two months and then they were reassessed.Results: The results showed 14 of 28 athletes who completed the protocol had marked weakness or a side-to-side difference of more than 25% at baseline. Two months later ten players recorded an improvement of ≥ 80% in their recorded scores. The mean muscle performance on the right side improved from 151 Newton (N) to 202 N (p<0.001) while on the left, the recorded results improved from 158 N to 223 N (p<0.001). Conclusions: The baseline values show widespread profound deficiencies in hip abduction performance not previously reported. Very large performance increases can be achieved, unsupervised, in a short period of time to potentially allow large clinically significant gains. This assessment should be an integral part of preparticipation screening and assessed in those with lower limb injuries. This particular exercise should be used clinically and more research is needed to determine its injury prevention and performance enhancement implications
Effects of fatigue on trunk stability in elite gymnasts
The aim of the present study was to test the hypothesis that fatigue due to exercises performed in training leads to a decrement of trunk stability in elite, female gymnasts. Nine female gymnasts participated in the study. To fatigue trunk muscles, four series of five dump handstands on the uneven bar were performed. Before and after the fatigue protocol, participants performed three trials of a balancing task while sitting on a seat fixed over a hemisphere to create an unstable surface. A force plate tracked the location of the center of pressure (CoP). In addition, nine trials were performed in which the seat was backward inclined over a set angle and suddenly released after which the subject had to regain balance. Sway amplitude and frequency in unperturbed sitting were determined from the CoP time series and averaged over trials. The maximum displacement and rate of recovery of the CoP location after the sudden release were determined and averaged over trials. After the fatigue protocol, sway amplitude in the fore-aft direction was significantly increased (p = 0.03), while sway frequency was decreased (p = 0.005). In addition, the maximum displacement after the sudden release was increased (p = 0.009), while the rate of recovery after the perturbation was decreased (p = 0.05). Fatigue induced by series of exercises representing a realistic training load caused a measurable decrement in dynamic stability of the trunk in elite gymnasts
Aetiology and risk factors of musculoskeletal disorders in physically active conscripts: a follow-up study in the Finnish Defence Forces
<p>Abstract</p> <p>Background</p> <p>Musculoskeletal disorders (MSDs) are the main reason for morbidity during military training. MSDs commonly result in functional impairment leading to premature discharge from military service and disabilities requiring long-term rehabilitation. The purpose of the study was to examine associations between various risk factors and MSDs with special attention to the physical fitness of the conscripts.</p> <p>Methods</p> <p>Two successive cohorts of 18 to 28-year-old male conscripts (<it>N </it>= 944, median age 19) were followed for six months. MSDs, including overuse and acute injuries, treated at the garrison clinic were identified and analysed. Associations between MSDs and risk factors were examined by multivariate Cox's proportional hazard models.</p> <p>Results</p> <p>During the six-month follow-up of two successive cohorts there were 1629 MSDs and 2879 health clinic visits due to MSDs in 944 persons. The event-based incidence rate for MSD was 10.5 (95% confidence interval (CI): 10.0-11.1) per 1000 person-days. Most MSDs were in the lower extremities (65%) followed by the back (18%). The strongest baseline factors associated with MSDs were poor result in the combined outcome of a 12-minute running test and back lift test (hazard ratio (HR) 2.9; 95% CI: 1.9-4.6), high waist circumference (HR 1.7; 95% CI: 1.3-2.2), high body mass index (HR 1.8; 95% CI: 1.3-2.4), poor result in a 12-minute running test (HR 1.6; 95% CI: 1.2-2.2), earlier musculoskeletal symptoms (HR 1.7; 95% CI: 1.3-2.1) and poor school success (educational level and grades combined; HR 2.0; 95% CI: 1.3-3.0). In addition, risk factors of long-term MSDs (≥10 service days lost due to one or several MSDs) were analysed: poor result in a 12-minute running test, earlier musculoskeletal symptoms, high waist circumference, high body mass index, not belonging to a sports club and poor result in the combined outcome of the 12-minute running test and standing long jump test were strongly associated with long-term MSDs.</p> <p>Conclusions</p> <p>The majority of the observed risk factors are modifiable and favourable for future interventions. An appropriate intervention based on the present study would improve both aerobic and muscular fitness prior to conscript training. Attention to appropriate waist circumference and body mass index would strengthen the intervention. Effective results from well-planned randomised controlled studies are needed before initiating large-scale prevention programmes in a military environment.</p
Australian chiropractic sports medicine: half way there or living on a prayer?
Sports chiropractic within Australia has a chequered historical background of unorthodox individualistic displays of egocentric treatment approaches that emphasise specific technique preference and individual prowess rather than standardised evidence based management. This situation has changed in recent years with the acceptance of many within sports chiropractic to operate under an evidence informed banner and to embrace a research culture. Despite recent developments within the sports chiropractic movement, the profession is still plagued by a minority of practitioners continuing to espouse certain marginal and outlandish technique systems that beleaguer the mainstream core of sports chiropractic as a cohesive and homogeneous group. Modern chiropractic management is frequently multimodal in nature and incorporates components of passive and active care. Such management typically incorporates spinal and peripheral manipulation, mobilisation, soft tissue techniques, rehabilitation and therapeutic exercises. Externally, sports chiropractic has faced hurdles too, with a lack of recognition and acceptance by organized and orthodox sports medical groups. Whilst some arguments against the inclusion of chiropractic may be legitimate due to its historical baggage, much of the argument appears to be anti-competitive, insecure and driven by a closed-shop mentality.sequently, chiropractic as a profession still remains a pariah to the organised sports medicine world. Add to this an uncertain continuing education system, a lack of protection for the title 'sports chiropractor', a lack of a recognized specialist status and a lack of support from traditional chiropractic, the challenges for the growth and acceptance of the sports chiropractor are considerable. This article outlines the historical and current challenges, both internal and external, faced by sports chiropractic within Australia and proposes positive changes that will assist in recognition and inclusion of sports chiropractic in both chiropractic and multi-disciplinary sports medicine alike
Sport-specific assessment of lactate threshold and aerobic capacity throughout a collegiate hockey season
The purpose of this study was to examine lactate threshold (LT) and maximal aerobic capacity with a sport-specific skating protocol throughout a competitive season in collegiate hockey players. We hypothesized that maximal aerobic capacity and skating velocity at LT would increase as the season progressed. Sixteen Division I college hockey players performed a graded exercise skating protocol to fatigue at 3 different times (pre-, mid-, and postseason). Subjects skated for 80 s during each stage, followed by 40 s of rest to allow for blood lactate sampling. Velocity at LT was similar during preseason (4.44 ± 0.08 m·s–1) and postseason (4.52 ± 0.05 m·s–1) testing, but was significantly elevated at midseason (4.70 ± 0.08 m·s–1; p \u3c 0.01), compared with preseason. In contrast, LT as a percentage of maximal heart rate (HRmax) was unchanged throughout the season. HRmax remained constant throughout the season, at approximately 190 beats·min–1. Preseason maximal aerobic capacity (48.7 ± 0.8 mL·kg–1·min–1) was significantly higher than that at postseason (45.0 ± 1.1 mL·kg–1·min–1; p \u3c 0.01). In conclusion, skating velocity at LT improved from pre- to midseason, but this adaptation was not maintained at postseason. Additionally, maximal aerobic capacity was reduced from pre- to postseason. These findings suggest a need for aerobic training throughout the college hockey season
Gender differences in hockey players during on-ice graded exercise
The purpose of this study was to examine whether gender differences exist for ventilatory threshold (VT), lactate threshold (LT), and Vo2max during on-ice skating in college hockey players. Ten male and 10 female Division III college hockey players performed a graded exercise skating protocol until reaching volitional fatigue. The graded exercise test employed stages that were 80 second sin duration, with 40 seconds of rest between each stage to obtain blood lactate samples. Ventilatory threshold occurred at a higher percentage of maximal heart rate (HRmax) in women than in men. The women’s VT occurred at 77.3% ± 1.6% HRmax, while the men’s VT occurred at 72.6% ± 2.0% HRmax (p·min-1 and 185.8 ± 2.5 b·min-1, respectively. Vo2max was different between genders, with men at 52.7 ± 1.3 mL·kg-1·min-1 and women at 40.1 ± 1.0 mL·kg-1·min-1 (p2max, with men at 52.7% ± 3.2% and women at 67.3% ± 4.0% (p2max. For each gender, LT occurred at a significantly higher percentage of HRmax or Vo2max than VT did. It can be concluded that VT does not accurately predict LT in male or female hockey players. Additionally, competitive female hockey players have a lower Vo2max but a higher VT than their male counterparts. An increased VT may be a compensatory mechanism to offset the smaller Vo2max values measured in female hockey players. On-ice testing is a practical way to address specific aerobic training needs of hockey players
- …