27 research outputs found

    Size constancy affects the perception and parietal neural representation of object size

    No full text
    Humans and animals rely on accurate object size perception to guide behavior. Object size is judged from visual input, but the relationship between an object's retinal size and its real-world size varies with distance. Humans perceive object sizes to be relatively constant when retinal size changes. Such size constancy compensates for the variable relationship between retinal size and real-world size, using the context of recent retinal sizes of the same object to bias perception towards its likely real-world size. We therefore hypothesized that object size perception may be affected by the range of recently viewed object sizes, attracting perceived object sizes towards recently viewed sizes. We demonstrate two systematic biases: a central tendency attracting perceived size towards the average size across all trials, and a serial dependence attracting perceived size towards the size presented on the previous trial. We recently described topographic object size maps in the human parietal cortex. We therefore hypothesized that neural representations of object size here would be attracted towards recently viewed sizes. We used ultra-high-field (7T) functional MRI and population receptive field modeling to compare object size representations measured with small (0.05–1.4°diameter) and large objects sizes (0.1–2.8°). We found that parietal object size preferences and tuning widths follow this presented range, but change less than presented object sizes. Therefore, perception and neural representation of object size are attracted towards recently viewed sizes. This context-dependent object size representation reveals effects on neural response preferences that may underlie context dependence of object size perception

    Modeling center-surround configurations in population: Receptive fields using fMRI

    No full text
    Antagonistic center-surround configurations are a central organizational principle of our visual system. In visual cortex, stimulation outside the classical receptive field can decrease neural activity and also decrease functional Magnetic Resonance Imaging (fMRI) signal amplitudes. Decreased fMRI amplitudes below baseline-0% contrast-are often referred to as "negative" responses. Using neural model-based fMRI data analyses, we can estimate the region of visual space to which each cortical location responds, i.e., the population receptive field (pRF). Current models of the pRF do not account for a center-surround organization or negative fMRI responses. Here, we extend the pRF model by adding surround suppression. Where the conventional model uses a circular symmetric Gaussian function to describe the pRF, the new model uses a circular symmetric difference-of-Gaussians (DoG) function. The DoG model allows the pRF analysis to capture fMRI signals below baseline and surround suppression. Comparing the fits of the models, an increased variance explained is found for the DoG model. This improvement was predominantly present in V1/2/3 and decreased in later visual areas. The improvement of the fits was particularly striking in the parts of the fMRI signal below baseline. Estimates for the surround size of the pRF show an increase with eccentricity and over visual areas V1/2/3. For the suppression index, which is based on the ratio between the volumes of both Gaussians, we show a decrease over visual areas V1 and V2. Using non-invasive fMRI techniques, this method gives the possibility to examine assumptions about center-surround receptive fields in human subjects

    A Network of Topographic Maps in Human Association Cortex Hierarchically Transforms Visual Timing-Selective Responses

    No full text
    Accurately timing sub-second sensory events is crucial when perceiving our dynamic world. This ability allows complex human behaviors that require timing-dependent multisensory integration and action planning. Such behaviors include perception and performance of speech, music, driving, and many sports. How are responses to sensory event timing processed for multisensory integration and action planning? We measured responses to viewing systematically changing visual event timing using ultra-high-field fMRI. We analyzed these responses with neural population response models selective for event duration and frequency, following behavioral, computational, and macaque action planning results and comparisons to alternative models. We found systematic local changes in timing preferences (recently described in supplementary motor area) in an extensive network of topographic timing maps, mirroring sensory cortices and other quantity processing networks. These timing maps were partially left lateralized and widely spread, from occipital visual areas through parietal multisensory areas to frontal action planning areas. Responses to event duration and frequency were closely linked. As in sensory cortical maps, response precision varied systematically with timing preferences, and timing selectivity systematically varied between maps. Progressing from posterior to anterior maps, responses to multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These timing maps largely overlap with numerosity and visual field map networks. In both visual timing map and visual field map networks, selective responses and topographic map organization may facilitate hierarchical transformations by allowing neural populations to interact over minimal distances

    Predicting Product Preferences on Retailers' Web Shops through Measurement of Gaze and Pupil Size Dynamics

    No full text
    Previous studies used gaze behavior to predict product preference in value-based decision-making, based on gaze angle variables such as dwell time, fixation duration and the first fixated product. While the application for online retail seems obvious, research with realistic web shop stimuli has been lacking so far. Here, we studied the decision process for 60 Dutch web shops of a variety of retailers, by measuring eye movements and pupil size during the viewing of web shop images. The outcomes of an ordinal linear regression model showed that a combination of gaze angle variables accurately predicted product choice, with the total dwell time being the most predictive gaze dynamic. Although pupillometric analysis showed a positive relationship between pupil dilation and product preference, adding pupil size to the model only slightly improved the prediction accuracy. The current study holds the potential to substantially improve retargeting mechanisms in online marketing based on consumers' gaze information. Also, gaze-based product preference proves to be a valuable metric in pre-testing product introductions for market research and prevent product launches from failure

    Topographic numerosity maps cover subitizing and estimation ranges

    No full text
    Numerosity, the set size of a group of items, helps guide behaviour and decisions. Non-symbolic numerosities are represented by the approximate number system. However, distinct behavioural performance suggests that small numerosities, i.e. subitizing range, are implemented differently in the brain than larger numerosities. Prior work has shown that neural populations selectively responding (i.e. hemodynamic responses) to small numerosities are organized into a network of topographical maps. Here, we investigate how neural populations respond to large numerosities, well into the ANS. Using 7 T fMRI and biologically-inspired analyses, we found a network of neural populations tuned to both small and large numerosities organized within the same topographic maps. These results demonstrate a continuum of numerosity preferences that progressively cover both the subitizing range and beyond within the same numerosity map, suggesting a single neural mechanism. We hypothesize that differences in map properties, such as cortical magnification and tuning width, underlie known differences in behaviour

    A network of topographic numerosity maps in human association cortex

    No full text
    Sensory and motor cortices each contain multiple topographic maps with the structure of sensory organs (such as the retina or cochlea) mapped onto the cortical surface. These sensory maps are hierarchically organized. For example, visual field maps contain neurons that represent increasingly large parts of visual space with increasingly complex responses 1 . Some visual neurons respond to stimuli with a particular numerosity — the number of objects in a set. We recently discovered a parietal topographic numerosity map in which neural numerosity preferences progress gradually across the cortical surface 2 , analogous to sensory maps. Following this analogy, we hypothesized that there may be multiple numerosity maps. Numerosity perception is implicated in many cognitive functions, including foraging 3 , multiple object tracking 4 , dividing attention 5 , decision-making 6 and mathematics 7,​8,​9 . Here we use ultra-high-field (7 Tesla, 7T) functional magnetic resonance imaging (fMRI) and neural-model-based analyses to reveal numerosity-selective neural populations organized into six widely separated topographic maps in each hemisphere. Although we describe subtle differences between these maps, their properties are very similar, unlike in sensory map hierarchies. These maps are found in areas implicated in object recognition, motion perception, attention control, decision-making and mathematics. Multiple numerosity maps may allow interactions with these cognitive systems, suggesting a broad role for quantity processing in supporting many perceptual and cognitive functions

    Impaired Velocity Processing Reveals an Agnosia for Motion in Depth

    No full text
    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion

    Topographic maps representing haptic numerosity reveals distinct sensory representations in supramodal networks

    No full text
    Dedicated maps for cognitive quantities such as timing, size and numerosity support the view that topography is a general principle of brain organization. To date, however, all of these maps were driven by the visual system. Here, we ask whether there are supramodal topographic maps representing cognitive dimensions irrespective of the stimulated sensory modality. We measured haptically and visually driven numerosity-selective neural responses using model-based analyses and ultra-high field (7T) fMRI. We found topographically organized neural populations tuned to haptic numerosity. The responses to visual or haptic numerosity shared a similar cortical network. However, the maps of the two modalities only partially overlap. Thus, although both visual and haptic numerosities are processed in a similar supramodal functional network, the underlying neural populations may be related, but distinct. Therefore, we hypothesize that overlap between modality-specific maps facilitates cross-modal interactions and supramodal representation of cognitive quantities
    corecore