33 research outputs found

    Pancreas Transplantation from Donors after Circulatory Death:an Irrational Reluctance?

    Get PDF
    Purpose of Review Beta-cell replacement is the best therapeutic option for patients with type 1 diabetes. Because of donor scarcity, more extended criteria donors are used for transplantation. Donation after circulatory death donors (DCD) are not commonly used for pancreas transplantation, because of the supposed higher risk of complications. This review gives an overview on the pathophysiology, risk factors, and outcome in DCD transplantation and discusses different preservation methods. Recent Findings Studies on outcomes of DCD pancreata show similar results compared with those of donation after brain death (DBD), when accumulation of other risk factors is avoided. Hypothermic machine perfusion is shown to be a safe method to improve graft viability in experimental settings. Summary DCD should not be the sole reason to decline a pancreas for transplantation. Adequate donor selection and improved preservation techniques can lead to enhanced pancreas utilization and outcome

    Hypothermic oxygenated machine perfusion of the human pancreas for clinical islet isolation: a prospective feasibility study

    Get PDF
    Due to an increasing scarcity of pancreases with optimal donor characteristics, islet isolation centers utilize pancreases from extended criteria donors, such as from donation after circulatory death (DCD) donors, which are particularly susceptible to prolonged cold ischemia time (CIT). We hypothesized that hypothermic machine perfusion (HMP) can safely increase CIT. Five human DCD pancreases were subjected to 6 h of oxygenated HMP. Perfusion parameters, apoptosis, and edema were measured prior to islet isolation. Five human DBD pancreases were evaluated after static cold storage (SCS). Islet viability, and in vitro and in vivo functionality in diabetic mice were analyzed. Islets were isolated from HMP pancreases after 13.4 h [12.9-14.5] CIT and after 9.2 h [6.5-12.5] CIT from SCS pancreases. Histological analysis of the pancreatic tissue showed that HMP did not induce edema nor apoptosis. Islets maintained >90% viable during culture, and an appropriate in vitro and in vivo function in mice was demonstrated after HMP. The current study design does not permit to demonstrate that oxygenated HMP allows for cold ischemia extension; however, the successful isolation of functional islets from discarded human DCD pancreases after performing 6 h of oxygenated HMP indicates that oxygenated HMP may be a useful technology for better preservation of pancreases

    Hypothermic oxygenated machine perfusion of the human donor pancreas

    No full text
    Background Transplantation of beta cells by pancreas or islet transplantation is the treatment of choice for a selected group of patients suffering from type 1 diabetes mellitus. Pancreata are frequently not accepted for transplantation, because of the relatively high vulnerability of these organs to ischemic injury. In this study, we evaluated the effects of hypothermic machine perfusion (HMP) on the quality of human pancreas grafts. Methods Five pancreata derived from donation after circulatory death (DCD) and 5 from donation after brain death (DBD) donors were preserved by oxygenated HMP. Hypothermic machine perfusion was performed for 6 hours at 25 mm Hg by separate perfusion of the mesenteric superior artery and the splenic artery. Results were compared with those of 10 pancreata preserved by static cold storage. Results During HMP, homogeneous perfusion of the pancreas could be achieved. Adenosine 5′-triphosphate concentration increased 6,8-fold in DCD and 2,6-fold in DBD pancreata. No signs of cellular injury, edema or formation of reactive oxygen species were observed. Islets of Langerhans with good viability and in vitro function could be isolated after HMP. Conclusions Oxygenated HMP is a feasible and safe preservation method for the human pancreas that increases tissue viability.</p
    corecore