107 research outputs found

    Foreign Direct Investment in Retail Marketing

    Get PDF
    FDI plays a vital role in improvement of Indian economy.FDI is a crucial element for surviving local industries in global market. FDI inflow provides strength to the Indian economy. Concerted efforts are needed at the regional, national and international levels in order to attract FDI Inflows for the growth of Indian economy. FDI is an easy path to enter the market of developing countries. Vast consumer market, big retail sector, reach aggregate demand, inadequate domestic supply, weak infrastructure, lack in technological background, political instability, low GDP, poor management skill, sick investment promotion strategies, government outlook towards investment, ill local industries, inadequate finance and unemployment all these factors are responsible for the attraction of developed countries about FDI in India. Quick and large capital refund is key factor in the globalization. Adequate attention should pay to improve the relations with foreign investors and offer them incentives for investment in domestic industries of India. The paper consist some responsibilities and recommendations for FDI in India. Government, Investors and Producer should give attention towards making healthy economy. Government should make favorable legal frame for India in FDI policies. Agreement must be included some measures about the quality and prices of goods. Preference should be given to exchange technological and skillful education between host and guest country. The goal of this research paper is to examine the opportunities, challenges, responsibilities and Recommendations for Foreign Direct Investment (FDI) in India. Keywords: FDI, FDI Inflow, Opportunities, Challenges, Recommendations, Responsibilities.

    Maximizing the Efficiency using Montgomery Multipliers on FPGA in RSA Cryptography for Wireless Sensor Networks

    Get PDF
    The architecture and modeling of RSA public key encryption/decryption systems are presented in this work. Two different architectures are proposed, mMMM42 (modified Montgomery Modular Multiplier 4 to 2 Carry Save Architecture) and RSACIPHER128 to check the suitability for implementation in Wireless Sensor Nodes to utilize the same in Wireless Sensor Networks. It can easily be fitting into systems that require different levels of security by changing the key size. The processing time is increased and space utilization is reduced in FPGA due to its reusability. VHDL code is synthesized and simulated using Xilinx-ISE for both the architectures. Architectures are compared in terms of area and time. It is verified that this architecture support for a key size of 128bits. The implementation of RSA encryption/decryption algorithm on FPGA using 128 bits data and key size with RSACIPHER128 gives good result with 50% less utilization of hardware. This design is also implemented for ASIC using Mentor Graphics

    Emotion recognition and analysis of netizens based on micro-blog during covid-19 epidemic

    Get PDF
    The research is about emotion recognition and analysis based on Micro-blog short text. Emotion recognition is an important field of text classification in Natural Language Processing. The data of this research comes from Micro-blog 100K record related to COVID-19 theme collected by Data fountain platform, the data are manually labeled, and the emotional tendencies of the text are negative, positive and neutral. The empirical part adopts dictionary emotion recognition method and machine learning emotion recognition respectively. The algorithms used include support vector machine and naive Bayes based on TFIDF, support vector machine and LSTM based on wod2vec. The five results are compared. Combined with statistical analysis methods, the emotions of netizens in the early stage of the epidemic are analyzed for public opinion. This research uses machine learning algorithm combined with statistical analysis to analyze current events in real time. It will be of great significance for the introduction and implementation of national policies

    CEAR: Cluster based Energy Aware Routing Algorithm to Maximize Lifetime of Wireless Sensor Networks (WSNs)

    Get PDF
    Technological development in wireless communication enables the development of smart, tiny, low cost and low power sensor nodes to outperform for various applications in Wireless Sensor Networks. In the existing Tabu search algorithm, clusters are formed using initial solution algorithm to conserve energy. We propose a Cluster Based Energy Aware Routing (CEAR) algorithm to maximize energy conservation and lifetime of network with active and sleep nodes. The proposed algorithm, removes duplication of data through aggregation at the cluster heads with active and sleep modes. A comparative study of CEAR algorithm with Tabu search algorithm is obtained. Comparative study shows improvement in the Lifetime and energy conservation by 17 and 22 % respectively over the existing algorithm

    Synergistic effect p-phenylenediamine and n,n diphenylthiourea on the electrochemical corrosion behaviour of mild steel in dilute acid media

    Get PDF
    Electrochemical studies of the synergistic effect of p-phenylenediamine and n,n diphenylthiourea (TPD) as corrosion inhibitor of mild steel in dilute sulphuric and hydrochloric acid through weight loss and potentiodynamic polarization at ambient temperature were performed. Experimental results showed the excellent performance of TPD with an optimal inhibition efficiency of 88.18 and 93.88 %in sulphuric and 87.42 and 87.15 %in hydrochloric acid from both tests at all concentration studied. Polarization studies show the compound to be a mixed-type inhibitor. Adsorption of deanol on the steel surface was observed to obey the Langmuir and Frumkin isotherm models. X-ray diffractometry confirmed the absence of corrosion products and complexes. Optical microscopy confirmed the selective inhibition property of TPD to be through chemical adsorption on the steel surfac

    The Critical Role of N- and C-Terminal Contact in Protein Stability and Folding of a Family 10 Xylanase under Extreme Conditions

    Get PDF
    Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive.In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions. folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions

    Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    Get PDF
    corecore