167 research outputs found
Writers\u27 Workshop sponsored by The Idaho Librarian
Let’s face it, writing is hard. Even for those who enjoy the process, coming up with ideas, churning out words to fill up a blank page, and subjecting a draft to endless revision can be extremely challenging and time-consuming! But communicating with others in our field is an important skill, and publishing is a professional requirement for many librarians. At this session hosted by two of the editors from ILA’s journal, The Idaho Librarian, we’ll review the basic building blocks of writing in our discipline, from brainstorming topics to outlining and story development, and we’ll engage in creative activities to advance our writing projects. Please come with an idea or a project in progress, and expect to leave with a greater understanding of (and enthusiasm for) the writing process. This session is open to all who want to expand their writing skills for fun or career development
Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores
In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion
Quantum electrodynamics in modern optics and photonics: tutorial
One of the key frameworks for developing the theory of light–matter interactions in modern optics and photonics is quantum electrodynamics (QED). Contrasting with semiclassical theory, which depicts electromagnetic radiation as a classical wave, QED representations of quantized light fully embrace the concept of the photon. This tutorial review is a broad guide to cutting-edge applications of QED, providing an outline of its underlying foundation and an examination of its role in photon science. Alongside the full quantum methods, it is shown how significant distinctions can be drawn when compared to semiclassical approaches. Clear advantages in outcome arise in the predictive capacity and physical insights afforded by QED methods, which favors its adoption over other formulations of radiation–matter interaction
Coupled stalagmite – Alluvial fan response to the 8.2 ka event and early Holocene palaeoclimate change in Greece
We explore the expression of early Holocene climatic change in the terrestrial Mediterranean of southern Greece. A regional palaeoclimate record from stable isotope and trace element geochemical proxies in an early Holocene (~12.4 ka to 6.7 ka) stalagmite is compared to the timing of palaeosol (entisol) development on an early Holocene alluvial fan located <100 km from the stalagmite site. Radiocarbon dated entisol development records fan abandonment surfaces, which can be coupled to the stalagmite climate signal. Variations in δ13C best record the main elements of palaeoclimatic change, more negative values indicating soil carbon input to karst groundwater under wetter conditions. The wettest conditions begin around 10.3 ka, coincident with the start of sapropel 1 deposition in the eastern Mediterranean. The widely documented northern hemisphere ‘8.2 ka event’ of cooler and drier conditions has a muted δ18O climatic signal in common with other stalagmite climate records from the wider Mediterranean. However, less negative δ13C values do record a period of episodic dryness between ~8.8 and ending at 8.2 ka. Wetter conditions re-established after 8.1 ka to the end of the record. The oldest alluvial fan entisols were developing by ~9.5 ka, and a prominent rubified entisol developed ~8.3 to 8.4 ka, indicating pedogenesis within dating error of the 8.2 ka event. The speleothem record of episodic dryness between ~8.8 and 8.2 ka, combined with other regional proxies, is consistent with the notion that precipitation patterns in Greece may have changed from predominantly winter frontal to summer convective during this period. Palaeosol formation on the alluvial fan may have been an allocyclic response to this change. It is plausible that fan-channel incision, driven by temporary development of a ‘flashier’ summer rainfall regime, isolated large areas of the fan surface allowing onset of prolonged pedogenesis there
The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation
Purpose: In children, data on the combined impact of age, genotype, and disease severity on tacrolimus (TAC) disposition are scarce. The aim of this study was to evaluate the effect of these covariates on tacrolimus dose requirements in the immediate post-transplant period in pediatric kidney and liver recipients. Methods: Data were retrospectively collected describing tacrolimus disposition, age, CYP3A5 and ABCB1 genotype, and pediatric risk of mortality (PRISM) scores for up to 14 days post-transplant in children receiving liver and renal transplants. Initial TAC dosing was equal in all patients and adjusted using therapeutic drug monitoring. We determined the relationship between covariates and tacrolimus disposition. Results: Forty-eight kidney and 42 liver transplant recipients (median ages 11.5 and 1.5 years, ranges 1.5-17.7 and 0.05-14.8 years, respectively) received TAC post-transplant. In both transplant groups, younger children (<5 years) needed higher TAC doses than older children [kidney: 0.15 (0.07-0.35) vs. 0.09 (0.02-0.20) mg/kg/12h, p = 0.046, liver: 0.12 (0.04-0.32) vs. 0.09 (0.01-0.18) mg/kg/12h, p
Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body
Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures
A Mississippian black shale record of redox oscillation in the Craven Basin, UK
Early diagenetic redox oscillation processes have been rarely recognised in the ancient rock record but potentially exert an important control on mineral authigenesis, hydrocarbon prospectivity and supply of metals and/or reduced S as part of associated mineral systems. The upper unit of the Mississippian Bowland Shale Formation is a candidate record of diagenetic redox oscillation processes because it was deposited under a relatively high sediment accumulation rate linked to a large delta system, and under dominantly anoxic and intermittently sulphidic bottom-water conditions. In order to characterise the syngenetic and early diagenetic processes, sedimentological and geochemical data were integrated through the Upper Bowland Shale at three sites in the Craven Basin (Lancashire, UK). Organic matter (OM) comprises a mixture of Type II, II-S, II/III and III OM. ‘Redox zones’ are defined by patterns of Fe-speciation and redox-sensitive trace element enrichment and split into two groups. ‘Sulphidic’ zones (EUX, AN-III, AN-I and AN-IT) represent sediments deposited under conditions of at least intermittently active sulphate-reduction in bottom-waters. ‘Non-sulphidic’ zones (OX-RX, OX-F and OX) represent sediments deposited under non-sulphidic (oxic to ferruginous anoxic) bottom-waters. Operation of a shelf-to-basin ‘reactive Fe’ (FeHR) shuttle, moderated by sea level fluctuation and delta proximity, controlled the position and stability of redoxclines between zones of Fe and sulphate reduction, and methanogenesis. Early diagenetic redoxclines were capable of migration through the shallow sediment column relatively quickly, in response to sea level fluctuation. Preservation of syngenetic and early diagenetic geochemical signals shows redoxclines between Fe and sulphate reduction, and the upper boundary of sulphate-methane transition zone, were positioned within decimetres (i.e., 10 s cm) of seabed. Falling sea level and increasing FeHR supply is recognised as a switch from zones EUX (high sea level), AN-III and ultimately AN-I and AN-IT (low sea level). Zone AN-I defines the operation of ‘redox oscillation’, between zones of Fe and sulphate reduction in shallow porewaters, associated with enhanced degradation of OM and complete dissolution of primary carbonate. Preservation of OM and carbonate, in this system, was a function of changing bottom and pore water redox processes. Redox oscillation operated in a siliciclastic, prodeltaic environment associated with a relatively high sediment accumulation rate and high loadings of labile organic matter and metal oxides. These findings are important for understanding Late Palaeozoic black shales in the context of hydrocarbon and mineral systems
- …