232,487 research outputs found
Local Spin Susceptibility of the S=1/2 Kagome Lattice in ZnCu3(OD)6Cl2
We report single-crystal 2-D NMR investigation of the nearly ideal spin S=1/2
kagome lattice ZnCu3(OD)6Cl2. We successfully identify 2-D NMR signals
originating from the nearest-neighbors of Cu2+ defects occupying Zn sites. From
the 2-D Knight shift measurements, we demonstrate that weakly interacting Cu2+
spins at these defects cause the large Curie-Weiss enhancement toward T=0
commonly observed in the bulk susceptibility data. We estimate the intrinsic
spin susceptibility of the kagome planes by subtracting defect contributions,
and explore several scenarios.Comment: 4 figures; published in PR-B Rapid Communication
Recommended from our members
System-level key performance indicators for building performance evaluation
Quantifying building energy performance through the development and use of key performance indicators (KPIs) is an essential step in achieving energy saving goals in both new and existing buildings. Current methods used to evaluate improvements, however, are not well represented at the system-level (e.g., lighting, plug-loads, HVAC, service water heating). Instead, they are typically only either measured at the whole building level (e.g., energy use intensity) or at the equipment level (e.g., chiller efficiency coefficient of performance (COP)) with limited insights for benchmarking and diagnosing deviations in performance of aggregated equipment that delivers a specific service to a building (e.g., space heating, lighting). The increasing installation of sensors and meters in buildings makes the evaluation of building performance at the system level more feasible through improved data collection. Leveraging this opportunity, this study introduces a set of system-level KPIs, which cover four major end-use systems in buildings: lighting, MELs (Miscellaneous Electric Loads, aka plug loads), HVAC (heating, ventilation, and air-conditioning), and SWH (service water heating), and their eleven subsystems. The system KPIs are formulated in a new context to represent various types of performance, including energy use, peak demand, load shape, occupant thermal comfort and visual comfort, ventilation, and water use. This paper also presents a database of system KPIs using the EnergyPlus simulation results of 16 USDOE prototype commercial building models across four vintages and five climate zones. These system KPIs, although originally developed for office buildings, can be applied to other building types with some adjustment or extension. Potential applications of system KPIs for system performance benchmarking and diagnostics, code compliance, and measurement and verification are discussed
Three-Nucleon Force and the -Mechanism for Pion Production and Pion Absorption
The description of the three-nucleon system in terms of nucleon and
degrees of freedom is extended to allow for explicit pion production
(absorption) from single dynamic de-excitation (excitation) processes.
This mechanism yields an energy dependent effective three-body hamiltonean. The
Faddeev equations for the trinucleon bound state are solved with a force model
that has already been tested in the two-nucleon system above pion-production
threshold. The binding energy and other bound state properties are calculated.
The contribution to the effective three-nucleon force arising from the pionic
degrees of freedom is evaluated. The validity of previous coupled-channel
calculations with explicit but stable isobar components in the
wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as
postscript files upon request), CEBAF-TH-93-0
Recommended from our members
AKARI observation of early-type galaxies in Abell 2218
We describe the AKARI InfraRed Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z ≅ 0.175. With the imaging capability at 11 and 15 μm, we investigate mid-infrared (MIR) properties of ETGs in the cluster environment. Among our flux-limited sample of 22 optical red sequence ETGs, we find that more than 50% have MIR-excess emission, and the most likely cause of the MIR excess is the circumstellar dust emission from asymptotic giant branch (AGB) stars. The MIR-excess galaxies reveal a wide spread in N3-S11 (3 and 11 μm) colors, indicative of a significant spread (2–11 Gyr) in the mean ages of stellar populations. They are also preferentially located in the outer region, suggesting the environment dependence of MIR-excess ETGs over an area out to a half virial radius
Environmental dependence of 8 μm luminosity functions of galaxies at z ~ 0.8: Comparison between RXJ1716.4+6708 and the AKARI NEP-deep field
Aims. We aim to reveal environmental dependence of infrared luminosity functions (IR LFs) of galaxies at z ~ 0.8 using the AKARI
satellite. AKARI’s wide field of view and unique mid-IR filters help us to construct restframe 8 μm LFs directly without relying on
SED models.
Methods. We construct restframe 8 μm IR LFs in the cluster region RXJ1716.4+6708 at z = 0.81, and compare them with a blank
field using the AKARI north ecliptic pole deep field data at the same redshift. AKARI’s wide field of view (10' × 10') is suitable to
investigate wide range of galaxy environments. AKARI’s 15 μm filter is advantageous here since it directly probes restframe 8 μm at
z ~ 0.8, without relying on a large extrapolation based on a SED fit, which was the largest uncertainty in previous work.
Results. We have found that cluster IR LFs at restframe 8 μm have a factor of 2.4 smaller L^∗ and a steeper faint-end slope than that
of the field. Confirming this trend, we also found that faint-end slopes of the cluster LFs becomes flatter and flatter with decreasing
local galaxy density. These changes in LFs cannot be explained by a simple infall of field galaxy population into a cluster. Physics
that can preferentially suppress IR luminous galaxies in high density regions is required to explain the observed results
Double and single pion photoproduction within a dynamical coupled-channels model
Within a dynamical coupled-channels model which has already been fixed from
analyzing the data of the pi N -> pi N and gamma N -> pi N reactions, we
present the predicted double pion photoproduction cross sections up to the
second resonance region, W< 1.7 GeV. The roles played by the different
mechanisms within our model in determining both the single and double pion
photoproduction reactions are analyzed, focusing on the effects due to the
direct gamma N -> pi pi N mechanism, the interplay between the resonant and
non-resonant amplitudes, and the coupled-channels effects. The model parameters
which can be determined most effectively in the combined studies of both the
single and double pion photoproduction data are identified for future studies.Comment: Version to appear in PRC. 16 pages, 13 figure
Infrared horizon sensor modeling for attitude determination and control: Analysis and mission experience
The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology
- …