14,135 research outputs found

    Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

    Get PDF
    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4% (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an improved correlation with the measured AOD during the DRAGON-NE Asia campaign. The correlation between the new AOD and AERONET value shows a regression slope of 1.00, while the comparison of the original AOD data retrieved using the original aerosol model shows a slope of 1.08. The change of y-offset is not significant, and the correlation coefficients for the comparisons of the original and new AOD are 0.87 and 0.85, respectively. The tendency of the original aerosol model to overestimate the retrieved AOD is significantly improved by using the SSA values in addition to size distribution and refractive index obtained using the new model.open0

    Long-lived neutral-kaon flux measurement for the KOTO experiment

    Get PDF
    The KOTO (K0K^0 at Tokai) experiment aims to observe the CP-violating rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu} by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The KLK_L flux is an essential parameter for the measurement of the branching fraction. Three KLK_L neutral decay modes, KL3π0K_L \rightarrow 3\pi^0, KL2π0K_L \rightarrow 2\pi^0, and KL2γK_L \rightarrow 2\gamma were used to measure the KLK_L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulation was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4\% level. The KLK_L flux was measured as (4.183±0.017stat.±0.059sys.)×107(4.183 \pm 0.017_{\mathrm{stat.}} \pm 0.059_{\mathrm{sys.}}) \times 10^7 KLK_L per 2×10142\times 10^{14} protons on a 66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and Experimental Physic

    Hepatobiliary Disposition of Troglitazone and Metabolites in Rat and Human Sandwich-Cultured Hepatocytes: Use of Monte Carlo Simulations to Assess the Impact of Changes in Biliary Excretion on Troglitazone Sulfate Accumulation

    Get PDF
    This study examined the hepatobiliary disposition of troglitazone (TGZ) and metabolites [TGZ sulfate (TS), TGZ glucuronide (TG), and TGZ quinone (TQ)] over time in rat and human sandwich-cultured hepatocytes (SCH). Cells were incubated with TGZ; samples were analyzed for TGZ and metabolites by liquid chromatography-tandem mass spectrometry. SCH mimicked the disposition of TGZ/metabolites in vivo in rats and humans; TGZ was metabolized primarily to TS and to a lesser extent to TG and TQ. In human SCH, the biliary excretion index (BEI) was negligible for TGZ and TQ, ∼16% for TS, and ∼43% for TG over the incubation period; in rat SCH, the BEI for TS and TG was ∼13 and ∼41%, respectively. Hepatocyte accumulation of TS was extensive, with intracellular concentrations ranging from 132 to 222 μM in rat SCH; intracellular TGZ concentrations ranged from 7.22 to 47.7 μM. In human SCH, intracellular TS and TGZ concentrations ranged from 136 to 160 μM and from 49.4 to 84.7 μM, respectively. Pharmacokinetic modeling and Monte Carlo simulations were used to evaluate the impact of modulating the biliary excretion rate constant (Kbile) for TS on TS accumulation in hepatocytes and medium. Simulations demonstrated that intracellular concentrations of TS may increase up to 3.1- and 5.7-fold when biliary excretion of TS was decreased 2- and 10-fold, respectively. It is important to note that altered hepatobiliary transport and the extent of hepatocyte exposure may not always be evident based on medium concentrations (analogous to systemic exposure in vivo). Pharmacokinetic modeling/simulation with data from SCH is a useful approach to examine the impact of altered hepatobiliary transport on hepatocyte accumulation of drug/metabolites

    Solar neutrino measurements in Super-Kamiokande-I

    Full text link
    The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of 8^8B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.Comment: 32pages, 57figures, submitted to Physical Review
    corecore