16 research outputs found

    First principles study on the electrochemical, thermal and mechanical properties of LiCoO2 for thin film rechargeable battery

    Get PDF
    Thin film rechargeable battery has become a research hotspot because of its small size and high energy density. Lithium cobalt oxide as a typical cathode material in classical lithium ion batteries is also widely used in thin film rechargeable batteries. In this work, the electrochemical, mechanical and thermal properties of LiCoO2 were systematically investigated using the first principles method. Elastic constants under hydrostatic pressures between 0 to 40 GPa were computed. Specific heat and Debye temperature at low temperature were discussed. Thermal conductivity was obtained using the imposed-flux method. The results show good agreements with experimental data and computational results in literature

    Discrete Element Modeling of Powder Dispensing and Laser Heating in Direct Laser Metal Sintering Process

    Get PDF
    poster abstractABSTRACT The growth of reliable methods to improve part created from additive manufacturing technologies greatly depend on the quantitative understanding of the mechanical properties and the microstructural behavior of the powder particles during the 3D printing procedure. To obtain a greater understanding of this process, a particle- based discrete element modeling (DEM) has incredible potential benefits in the field of manufacturing for reducing cost and control specific structures and materials of the parts created from this process. In this research, we developed a numerical tool and use it to study the powder characterization of the powder deposition process in the Direct Metal Laser Sintering (DLMS) machine. Our simulations include the modelling of particle insertion, particle spreading, and temperature distribution due to laser beam sintering process. The DEM simulation results show that the particle distribution of the powder bed after powder dispersing process. Temperature distribution after laser heating is also given

    Discrete element modeling of powder flow and laser heating in direct metal laser sintering process

    Get PDF
    A novel particle-based discrete element model (DEM) is developed to simulate the whole Direct Metal Laser Sintering (DMLS) process, which includes simplified powder deposition, recoating, laser heating, and holding stages. This model is first validated through the simulation of particle flow and heat conduction in the powder bed, and the simulated results are in good agreement with either experiment in the literature or finite element method. Then the validated model is employed to the DMLS process. The effects of laser power, laser scan speed, and hatch spacing on the temperature distributions in the powder bed are investigated. The results demonstrate that the powder bed temperature rises as the laser power is increased. Increasing laser scan speed and laser hatch spacing will not affect the average temperature increase in the powder bed since energy input is kept same. However, a large hatch spacing may cause non-uniform temperature distribution and microstructure inhomogeneity. The model developed in this study can be used as a design and optimization tool for DMLS process

    A Multi-Scale Multi-Physics Modeling Framework of Laser Powder Bed Fusion Additive Manufacturing Process

    Get PDF
    A longstanding challenge is to optimize additive manufacturing (AM) process in order to reduce AM component failure due to excessive distortion and cracking. To address this challenge, a multi-scale physics-based modeling framework is presented to understand the interrelationship between AM processing parameters and resulting properties. In particular, a multi-scale approach, spanning from atomic, particle, to component levels, is employed. The simulations of sintered material show that sintered particles have lower mechanical strengths than the bulk metal because of their porous structures. Higher heating rate leads to a higher mechanical strength due to accelerated sintering rates. The average temperature in the powder bed increases with higher laser power. The predicted distortion due to residual stress in the AM fabricated component is in good agreement with experimental measurements. In summary, the model framework provides a design tool to optimize the metal powder based additive manufacturing process

    Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15–5 PH1 Stainless Steel Powders and Components

    Get PDF
    15–5 PH1 stainless steel powder is one of the common materials used for the DMLS process. In this study, both the powder and parts fabricated via DMLS have been characterized. The microstructure and elemental composition have been examined. The microhardness and surface roughness have also been measured. The results show that most powder particle are in spherical with a particle size of 5 ~ 60 μm. Chemical compositions of the powder compare well with the literature data. The thickness of rough surface is about 1 μm. The measured Rockwell hardness is HRC 42.9±0.3, which is also in good agreement with literature

    Implementation of Conformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds

    Get PDF
    This work presents implementation of numerical analysis and topology optimization techniques for redesigning traditional injection molding tools. Traditional injection molding tools have straight cooling channels, drilled into a solid body of the core and cavity. The cooling time constitutes a large portion of the total production cycle that needs to be reduced as much as possible in order to bring in a significant improvement in the overall business of injection molding industry. Incorporating conformal cooling channels in the traditional dies is a highly competent solution to lower the cooling time as well as improve the plastic part quality. In this paper, the thermal and mechanical behavior of cavity and core with conformal cooling channels are analyzed to find an optimum design for molding tools. The proposed design with conformal cooling channels provides a better alternative than traditional die designs with straight channels. This design is further optimized using thermo-mechanical topology optimization based on a multiscale approach for generating sound porous structures. The implemented topology optimization results in a light-weight yet highly effective die cavity and core. The reduction in weight achieved through the design of dies with porous structures is meant to facilitate the adoption of additive manufacturing for die making by the tooling industry
    corecore