6,562 research outputs found

    SOUTHERNMOST OCCURRENCE OF THE SUWANNEE COOTER, PSEUDEMYS CONCINNA SUWANNIENSIS (TESTUDINES: EMYDIDAE)

    Get PDF
    The Suwannee Cooter, Pseudemys concinna suwanniensis, the largest member of the speciose turtle family Emydidae, inhabits a small number of rivers that drain into the northeastern Gulf of Mexico along the northwest coast of Florida from just west of Tallahassee to just south of Tampa. The status of this state-protected subspecies in the southernmost of these rivers, the Alafia, is unknown and hence of conservation concern. We provide recent evidence confirming that a reproducing population still exists in this river, and review available specimens and both published and unpublished records documenting the southern limit of distribution. At least within the eastern United States, our observations also extend confirmed knowledge of the geographic occurrence of hatchling turtles overwintering in the nest southward by 285 km

    Entangling quantum and classical states of light

    Full text link
    Entanglement between quantum and classical objects is of special interest in the context of fundamental studies of quantum mechanics and potential applications to quantum information processing. In quantum optics, single photons are treated as light quanta while coherent states are considered the most classical among all pure states. Recently, entanglement between a single photon and a coherent state in a free-traveling field was identified to be a useful resource for optical quantum information processing. However, it was pointed out to be extremely difficult to generate such states since it requires a clean cross-Kerr nonlinear interaction. Here, we devise and experimentally demonstrate a scheme to generate such hybrid entanglement by implementing a coherent superposition of two distinct quantum operations. The generated states clearly show entanglement between the two different types of states. Our work opens a way to generate hybrid entanglement of a larger size and to develop efficient quantum information processing using such a new type of qubits.Comment: 9 pages, 4 figure

    Risk of respiratory depression with opioids and concomitant gabapentinoids.

    Get PDF
    Introduction:The combination of opioids and central nervous system depressants such as benzodiazepines and barbiturates has an additive effect on the frequency of oversedation and respiratory depression requiring naloxone use in hospitalized patients. Gabapentinoids (gabapentin and pregabalin) are frequently prescribed with opioids for their opioid-sparing and adjuvant analgesic effects. There is limited literature on the risk of respiratory depression due to the combination of opioids and gabapentinoids requiring naloxone administration. Methods:This retrospective study evaluated patients who were prescribed opioids and at least one dose of naloxone between March 1, 2014 and September 30, 2016. The primary objective of this study was to compare the frequency of respiratory depression among patients who received naloxone and opioids (non-gabapentinoid group) with those who received naloxone, opioids, and gabapentinoids (gabapentinoid group). Secondary objectives included comparing the association of oversedation, using the Pasero Opioid-induced Sedation Scale, and various risk factors with those in the gabapentinoid group. Results:A total of 153 patient episodes of naloxone administration (102 in the non-gabapentinoid and 51 in the gabapentinoid groups) in 125 unique patients were included in the study. For the primary objective, there were 33 episodes of respiratory depression associated with the non-gabapentinoid group (33/102=32.4%) versus 17 episodes of respiratory depression with the gabapentinoid group (17/51=33.3%) (p=0.128). Secondary objectives showed a significant association between respiratory depression and surgery in the previous 24 hours (p=0.036) as well as respiratory depression and age >65 years (p=0.031) for patients in the non-gabapentinoid group compared to the gabapentinoid group. Conclusion:There was no significant association of respiratory depression in the gabapentinoid group versus the non-gabapentinoid group. There was an increased risk of respiratory depression in the gabapentinoid group, specifically in patients who had surgery within the previous 24 hours

    Expression of Ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of IFN-lambda against norovirus and reovirus

    Get PDF
    Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1. We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity. IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo. Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1(−/−) mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections

    Identifying the Molecular Origin of Global Warming

    Get PDF
    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed

    Excited Vibrational Level Rotational Constants for SiC2: A Sensitive Molecular Diagnostic for Astrophysical Conditions

    Get PDF
    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v(sub 3) = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm(exp -1) and 3 MHz, respectively in some cases. Additionally, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3(sub v3), the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v(sub 3) = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v(sub 3) 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the v(sub 3) mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity

    A New 2d/4d Duality via Integrability

    Full text link
    We prove a duality, recently conjectured in arXiv:1103.5726, which relates the F-terms of supersymmetric gauge theories defined in two and four dimensions respectively. The proof proceeds by a saddle point analysis of the four-dimensional partition function in the Nekrasov-Shatashvili limit. At special quantized values of the Coulomb branch moduli, the saddle point condition becomes the Bethe Ansatz Equation of the SL(2) Heisenberg spin chain which coincides with the F-term equation of the dual two-dimensional theory. The on-shell values of the superpotential in the two theories are shown to coincide in corresponding vacua. We also identify two-dimensional duals for a large set of quiver gauge theories in four dimensions and generalize our proof to these cases.Comment: 19 pages, 2 figures, minor corrections and references adde

    Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory

    Get PDF
    Background: Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings: In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and ‘‘remembers’ ’ its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance: We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit di
    corecore